Spelling suggestions: "subject:"[een] COPOLYMER"" "subject:"[enn] COPOLYMER""
161 |
Characterization of Ethylene/α-Olefin Copolymers Made with a Single-Site Catalyst Using Crystallization Elution FractionationAlkhazaal, Abdulaal January 2011 (has links)
A new analytical technique to measure the chemical composition distribution (CCD) of polyolefins, crystallization elution fractionation (CEF), was introduced in 2006 during the First International Conference on Polyolefin Characterization. CEF is a faster and higher resolution alternative to the previous polyolefin CCD analytical techniques such as temperature rising elution fractionation (TREF) and crystallization elution fractionation (CRYSTAF) (Monrabal et al., 2007).
Crystallization elution fractionation is a liquid chromatography technique used to determine the CCD of polyolefins by combining a new separation procedure, dynamic crystallization, and TREF. In a typical CEF experiment, a polymer solution is loaded in the CEF column at high temperature, the polymer is allowed to crystallize by lowering the solution temperature, and then the precipitated polymer is eluted by a solvent flowing through the column as the temperature is raised. CEF needs to be calibrated to provide quantitative CCD results.
A CEF calibration curve consists of a mathematical relationship between elution temperature determined by CEF and comonomer fraction in the copolymer that could be estimated by Fourier transform infrared spectroscopy (FTIR) and carbon-13 nuclear magnetic resonance (13C NMR). Different comonomer types in ethylene/α-olefin copolymers will have distinct calibration curves.
The main objective of this thesis is to obtain CEF calibration curves for several different ethylene/α-olefin copolymers and to investigate which factors influence these calibration curves. A series of homogeneous ethylene/α-olefin copolymers (1-hexene, 1-octene and 1-dodecene) with different comonomer fractions were synthesized under controlled conditions to create CEF calibration standards. Their average chemical compositions were determined by 13C NMR and FTIR and then used to establish CEF calibration curves relating elution temperature and comonomer molar fraction in the copolymer.
|
162 |
Aggregation-induced emission of organic compounds and polymers containing fluorene or tetraphenylthiophene ringChien, Rong-hong 05 September 2011 (has links)
Traditional organic chromophores and polymers with disc-like, coplanar geometry tend to be highly emissive in the dilute solutions but become weakly luminescent in the concentrated solution and solid states. On the contrast, conventional chromophores (such as silole) with non-coplanar structure exhibit strong fluorescence in the concentrated states due to the aggregation-induced emission (AIE) or AIE enhancement (AIEE) effect originated from the restricted intramolecular rotation (RIR) inherent from the chemical structures of the luminescent materials. To verify the influence of RIR on the AIEE properties, four approaches were attempted in this research.
First, copolymers PFN with alternative fluorene-naphthol unit was prepared through facile Suzuki coupling and was characterized to have AIEE properties due to the hydrogen-bond (H-bond) interactions among the inherent hydroxyl (OH) groups of the naphthol units. The H-bond interactions of PFN copolymer effectively restrict the molecular rotations and experimental variables (such as increasing solution concentration, introducing non-solvent water to solution, cooling and applying shearing forces during solvent evaporation stage etc.) effective in promoting the H-bond interactions result in the emission enhancement.
Second, the fluorescent PFN was blended with poly(vinyl pyrrolidone) (PVR) through facile hydrogen-bond (H-bond) interactions. By the effective H-bond interactions between the OH groups of PFN and the carbonyl functions of PVR. The molecular rotations of PFN can be effectively locked by large amounts of carbonyl groups in PVR. With the efficient H-bond interactions, the PFN/PVR blend with the low content (2.33 wt%) of fluorescent PFN component actually has a high quantum efficiency of 0.93, comparatively higher than other blends containing higher fluorescent PFN.
Third, novel vinyl polymer PTP with pendant AIE-effective tetraphenylthiophene (TP) group was prepared through radical polymerization. The resultant PTP polymer exhibits two discernible emission bands corresponding to monomer and aggregate emissions, respectively. The relative monomer to aggregate emission intensity of the PTP polymer in either the solution or the solid state depends strongly on the extent of aggregations. Increasing solution concentration results in the increasing extent of aggregation and the increasing aggregate/monomer emission ratio and also, the large emission enhancement due to the AIEE effect.
Finally, the TP-derived ammonium (TP-NH3+) cations are complexed with poly(sodium vinylsulfonate) (PSV) polyanion to generate ionic PSV-TP(x/y) systems with long-range electrostatic interactions between the cationic ammonium of TP-NH3+ and the polyanion of PSV. The fluorophoric TP units are associated with each other to form large aggregate domains stabilized by the long-range interactions. Introduction of water into dilute solution of PSV-TP in THF resulted in self-aggregated nanoparticles and the accompanied emission enhancement due to AIEE effect. Introduction of excess PSV polyanions promoted the self-aggregation of the TP fluorophores and resulted in the fluorescence enhancement. Nevertheless, addition of NaCl electrolytes causes the dissociations of the TP aggregates and the corresponding emission reduction. By controlling the additive, the blended PSV-TP film containing excess PSV has a high quantum yield of £XF = 0.83. In addition, the ionic PSV-TP complex film possesses high spectral stability without spectral variations after annealing at a high temperature of 270 oC.
|
163 |
One-pot Synthesis of Hierarchical Mesoporous Materials Fabricated from ABC Triblock Copolymer as Single TemplateLin, Ruei-Bin 20 February 2012 (has links)
ABC type amphiphilic triblock copolymers, polyethylene-b-poly(ethylene oxide)-b-poly (£`-caprolactone) (PE-b-PEO-b-PCL), were synthesized through ring-opening polymerization. We have successfully synthesized hierarchical mesoporous silicas using a simple evaporation-induced self-assembly (EISA) strategy. Two blocks of hydrophobic segment (PE and PCL) in the triblock copolymer (PE-b-PEO-b-PCL) involved in two-type mesepores after calcinations. We recognized the PE segment attributed to face centered cubic (f. c. c.) morphology (spherical pore) and the PCL segment attributed to tetragonal cylinder structure (cylinder pore) by small angle X-ray scattering (SAXS), transmission electron microscopy (TEM) and specific surface area & pore size distribution analyzer (BET), respectively. We also investigated the effect on pore size and morphology with changing the molecular weight of PCL and the ratios of TEOS/template/HCl.
We also synthesized the mesoporous phenolic resin by triblock copolymer poly(ethylene oxide)-b-poly(£`-caprolactone)-b-poly(L-lactide) (PEO-b-PCL-b-PLLA). After curing and calcinations, we also explored the morphology and pore size distribution of mesoporous phenolic by SAXS, TEM, BET. Because of the sequence of hydrophobic segment PCL and PLLA lay in the same side, so we could only observe hexagonal cylinder structure and one pore size.
|
164 |
Double phase-separation morphology of comb-coil diblock copolymerHong, Jian-Yu 30 July 2001 (has links)
Solid-state complexes between diblock copolymer and amphiphilic surfactant (surf) results in polymers characterized by two length scales with one macroscopic ¡§block copolymer length¡¨ and one mesomorphic ordered ¡§nanoscale¡¨. In this study, the desired polymer was prepared by complexing the surf molecules, i.e., 4-dodecylbenzenesulfonic acid (DBSA), with polystyrene-block-poly(4-vinyl pyridine) (PS-b-P4VP) and a comb-coil A-block-(B-graft-C) type copolymer can be generated through a supramolecular assembly route. On the block copolymer scale, the PS blocks are phase-separation from the P4VP(DBSA)x block, which x denotes the molar ratio between DBSA and pyridine groups. Bonding interaction between PS-b-P4VP and DBSA was conformed by FTIR. PLM was used to detect the mesomorphic structure within P4VP(DBSA)x block. In all cases, we found that birefringent can be only found in copolymer with their comb content exceeding 63 wt%. In the thermal analysis, shows us that the glasses transition temperature(Tgs) of the P4VP(DBSA)x block increases with the increasing DBSA content, a result related to the stiffening of the P4VP main chain due to dense packing. On the mesomorphic nanoscale, wide-angle X-ray diffraction study suggests an ordered supramolecular layer structure was formed in most of the complexation cases, in which the thicknesses of the polymer and surf layers were determined from the one-dimensional correlation function. The result indicates that both layers thickness increase with increasing DBSA amounts due to the stretching of the long alkyl tail in DBSA. Finally, macroscopic morphology varied with the DBSA content according to TEM results.
|
165 |
Synthesis of conjugated polymers and block copolymers via catalyst transfer polycondensationOno, Robert Jun 26 September 2013 (has links)
Conjugated polymers hold tremendous potential as low-cost, solution processable materials for electronic applications such organic light-emitting diodes and photovoltaics. While the concerted efforts of many research groups have improved the performance of organic electronic devices to near-relevant levels for commercial exploitation over the last decade, the overall performance of organic light-emitting diode and organic photovoltaic devices still lags behind that of their traditional, inorganic counterparts. Realizing the full potential of organic electronics will require a comprehensive, molecular-level understanding of conjugated polymer photophysics. Studying pure, well-defined, and reproducible conjugated polymer materials should enable these efforts; unfortunately, conjugated polymers are typically synthesized by metal-catalyzed step-growth polycondensation reactions that do not allow for rigorous control over polymer molecular weight or molecular weight distribution (i.e., dispersity). Chain-growth syntheses of conjugated polymers would not only allow for precise control over the aforementioned polymer metrics such as molecular weight and dispersity, but could also potentially create new applications by enabling the preparation of more advanced macromolecular structures such as block copolymers and surface grafted polymers. Our efforts toward realizing these goals as well as toward exploiting chain-growth methodologies to better understand fundamental conjugated polymer photophysics and self-assembly will be presented. / text
|
166 |
Μελέτη της αλληλεπίδρασης μεταλλικών νανοσωματιδίων με αμφίφιλα συσταδικά συμπολυμερήΧατζηαντωνάκης, Δημήτριος 04 December 2014 (has links)
Σκοπός της παρούσας διπλωματικής εργασίας είναι η σύνθεση και ο χαρακτηρισμός νανοσωματιδίων αργύρου και χρυσού με και χωρίς την παρουσία πολυμερούς. Δύο κατηγορίες νανοσωματιδίων συντέθηκαν, η πρώτη είναι νανοσωματίδια Ag και μελετήθηκε η συναρμογή τους στην κορώνα μικκυλίου συμπολυμερούς. Η δεύτερη κατηγορία είναι νανοσωματίδια χρυσού και μελετήθηκε η αλληλεπίδραση συμπολυμερούς με την επιφάνεια των νανοσωματιδίων. Η εργασία επικεντρώθηκε στη σύνθεση και την φασματοσκοπική μελέτη των νανοσωματιδίων και των υβριδικών υλικών χρησιμοποιώντας όλες τις διαθέσιμες τεχνικές δομικού χαρακτηρισμού. Αναλυτικότερα στο μεγαλύτερο μέρος της εργασίας περιγράφεται η σύνθεση νανοσωματιδίων αργύρου και η in situ σύνθεση μεταλλικών νανοσωματιδίων αργύρου στην κορώνα συμπολυμερούς. Τα νανοσωματίδια αργύρου συντέθηκαν από την αναγωγή άλατος AgNO3 και την προσθήκη ποσότητας αναγωγικού μέσου, στην συγκεκριμένη περίπτωση NaBH4. Με την προσθήκη του αναγωγικού μέσου ο άργυρος από Ag+ ανάχθηκε σε Ag0 .
Νανοσωματίδια αργύρου συντέθηκαν in-situ στην κορώνα του συμπολυμερούς PHOS-PEO. Το πρωτόκολλο που ακολουθήθηκε περιλαμβάνει τα παρακάτω βήματα. Αρχικά για την διαλυτοποίηση του συμπολυμερούς επιλέχθηκε εκλεκτικός διαλύτης ως προς την μια συστάδα του, ώστε να σχηματιστούν μικκύλια αποτελούμενα από έναν συμπαγή υδρόφοβο πυρήνα και μια διαλυτή κορώνα. Στη συνέχεια προστίθεται το άλας του μετάλλου στο διάλυμα με αποτέλεσμα την συναρμογή του στην κορώνα, τέλος η αναγωγή των μεταλλικών ιόντων σε μεταλλικά νανοσωματίδια με την προσθήκη κάποιου αναγωγικού μέσου.
Η δεύτερη κατηγορία αφορά την σύνθεση νανοσωματιδίων χρυσού με την μέθοδο Turkevic. Η σύνθεση έγινε με την διαλυτοποίηση σε νερό άλατος χρυσού HAuCl4 και την θέρμανση του σε στήλη με διπλό τοίχωμα στους 100⁰C και με ταυτόχρονη ανάδευση. Αφού το διάλυμα έφτασε σε σημείου βρασμού έγινε η προσθήκη του αναγωγικού μέσου και το άλας χρυσού ανάχθηκε από Au+3 σε Au0 . Τα νανοσωματίδια που παρασκευάστηκαν με την παραπάνω μέθοδο προστέθηκαν σε διάλυμα νερού με συμπολυμερές PHOS-PEO το οποίο είχε δημιουργήσει μικκύλιο λόγω του αμφίφιλου χαρακτήρα του.
Και στις δύο κατηγορίες μελετήθηκε το μέγεθος το σχήμα και η σταθερότητα τους. Καθώς και έγινε σύγκριση με τα νανοσωματίδια αργύρου και χρυσού με την παρουσία πολυμερούς ως προς την σταθερότητα τους σε βάθος χρόνου. Βρέθηκε ότι υπάρχει ισχυρή αλληλεπίδραση ανάμεσα στο συμπολυμερές PHOS-PEO και στα νανοσωματίδια αργύρου που συντέθηκαν παρουσία του συμπολυμερούς, και σημειώθηκε σημαντική συμβολή του συμπολυμερούς στην ομοιογένεια και σταθερότητα των αιωρημάτων των νανοσωματιδίων σε βάθος χρόνου. Αντίθετα, η αλληλεπίδραση του ίδιου συμπολυμερούς με νανοσωματίδια χρυσού αποδείχθηκε ασθενής. / -
|
167 |
Development of methoxy poly(ethylene glycol)-block-poly(caprolactone) amphiphilic diblock copolymer nanoparticulate formulations for the delivery of paclitaxelLetchford, Kevin John 11 1900 (has links)
The goal of this project was to develop a non-toxic amphiphilic diblock copolymer nanoparticulate drug delivery system that will solubilize paclitaxel (PTX) and retain the drug in plasma. Methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (MePEG-b-PCL) diblock copolymers loaded with PTX were characterized and their physicochemical properties were correlated with their performance as nanoparticulate drug delivery systems. A series of MePEG-b-PCL was synthesized with PCL blocks ranging from 2-104 repeat units and MePEG blocks of 17, 44 or 114 repeat units. All copolymers were water soluble and formed micelles except MePEG₁₁₄-b-PCL₁₀₄, which was water insoluble and formed nanospheres.
Investigation of the effects of block length on the physicochemical properties of the nanoparticles was used to select appropriate copolymers for development as PTX nanoparticles. The critical micelle concentration, pyrene partition coefficient and diameter of nanoparticles were found to be dependent on the PCL block length. Copolymers based on a MePEG molecular weight of 750 g/mol were found to have temperature dependent phase behavior.
Relationships between the concentration of micellized drug and the compatibility between the drug and core-forming block, as determined by the Flory-Huggins interaction parameter, and PCL block length were developed. Increases in the compatibility between PCL and the drug, as well as longer PCL block lengths resulted in increased drug solubilization.
The physicochemical properties and drug delivery performance characteristics of MePEG₁₁₄-b-PCL₁₉ micelles and MePEG₁₁₄-b-PCL₁₀₄ nanospheres were compared. Nanospheres were larger, had a more viscous core, solubilized more PTX and released it slower, compared to micelles. No difference was seen in the hemocompatibility of the nanoparticles as assessed by plasma coagulation time and erythrocyte hemolysis. Micellar PTX had an in vitro plasma distribution similar to free drug. The majority of micellar PTX associated with the lipoprotein deficient plasma fraction (LPDP). In contrast, nanospheres were capable of retaining more of the encapsulated drug with significantly less PTX partitioning into the LPDP fraction.
In conclusion, although both micelles and nanospheres were capable of solubilizing PTX and were hemocompatible, PTX nanospheres may offer the advantage of prolonged blood circulation, based on the in vitro plasma distribution data, which showed that nanospheres retained PTX more effectively.
|
168 |
Nanostructuration of epoxy networks by using polyhedral oligomeric silsesquioxanes POSS and its copolymersChen, Jiang Feng 08 June 2012 (has links) (PDF)
A series of hybrid component based on reactive polyhedral oligomeric silsesquioxane(POSS) precusors and its reactive copolymers of PGMA were synthesized and utilized to nanobuild in epoxy. Reactive POSS and copolymer dispersed in homogenous in matrix, overcomed POSS-POSS interaction, which resulted in macroscale phase separation. The nanocomposites obtained were analyzed by Scanning electron microscopy, Transmission electron microscopy, X-ray scattering and dynamic mechanical. An analogue of POSS (denoted as POSSMOCA) was synthesized via addition reaction, which had reactive amino group bonding into epoxy network and improved the thermostability, because of the structural silicon, nitrogen and halogen. Epoxy/polyhedral oligomeric silsesquioxanes (POSS) hybrid composites were prepared from prereaction between trifunctional silanol POSS-OH and diglycidyl ether of bisphenol A (DGEBA) via silanol and the oxirane group. Reactive POSS-PGMA was polymerized via Reversible addition-fragmentation transfer polymerization. It was easy to tail the compatibility of the epoxide block copolymer with a step-growth polymerized matrix, to form nanostructure via reaction with PGMA segements. In the case of inert POSS-PMMA copolymers modified epoxy, topology of copolymer defined the final morphology and interaction between epoxy and them, because of directional hydrogen bonding and dilution effect. Tg of different epoxide conversion, obeyed of Gordon-Taylor equation and Kwei equation, k which reflected the interaction of modifier and DGEBA/MEDA and epoxy/amine oligomers, was consistent of the rheology and dynamic results.
|
169 |
Hybrid Materials of Block Copolymers and Magnetic NanoparticlesZHOU, ZHIHAN 10 September 2010 (has links)
In this PhD thesis, the preparation of several types of hybrid materials of block copolymer and magnetic nanoparticles is described. The diversified morphologies of nanoaggregates formed by dispersing poly(glyceryl methacrylate)-block-poly(2-cinnamoyloxyethyl methacrylate)-block-poly(tert-butyl acrylate) tri-block copolymers in block selective solvents will be reported first. The volume occupied by the core block in these nanoaggregates can be swollen by solvent, and the core block can be sculpted. The cores can act potentially as the template to grow magnetic nanoparticles. Thus, a potential method for preparing hybrid magnetic materials of block copolymers and magnetic nanoparticles with different morphologies is developed.
A one-pot method to synthesize cobalt nanoparticles covered by a polymer shell is then reported. This is achieved by thermally decomposing dicobalt octacarbonyl in the presence of polymeric multi-dentate ligand poly(ethylene glycol)-block-poly(acrylic acid). Using a similar method, cobalt nanoparticles covered by poly(2-cinnamoyloxyethyl methacryate)-block-poly(acrylic acid) ligand are synthesized. The cobalt nanoparticles fuse into chains for their magnetic dipole-dipole interaction. The chains are then coated with poly(tert-butyl acrylate)-block-poly(2-cinnamoyloxyethyl methacrylate). The coated Co chains are further locked by photo-crosslinking the poly(2-cinnamoyloxyethyl methacrylate) segments. The as-prepared cobalt nano wires have interesting magnetic response and may be used to build complicated magnetic nano devices.
Another hybrid magnetic material is prepared via an oil-in-water emulsion method. The oil phase of the emulsion sphere consists of r-Fe2O3 magnetic nanoparticles covered with the poly(2-cinnamoyloxyethyl methacryate)-block-poly(acrylic acid) ligand and a poly(2-cinnamoyloxyethyl methacryate) homopolymer. It was dispersed in water using a mixture of poly(2-cinnamoyloxyethyl methacrylate)-block-poly(succinoylglyceryl methacrylate) and poly(2-cinnamoyloxyethyl methacrylate)-block-poly(glyceryl methacrylate) as the surfactants. The evaporation of the organic solvent left behind solid particles in water. The polymer chains on the surface of the obtained spheres allow the immobilization of biomolecules. Factors affecting the emulsion process are studied systematically. The emulsion spheres are characterized using TEM, AFM, TGA and etc. The emulsion sphere have potential application is immunoassay. The protein binding capacity of the spheres is determined. / Thesis (Ph.D, Chemistry) -- Queen's University, 2010-09-10 11:50:46.618
|
170 |
Development of block copolymer based nanocarriers for the solubilization and delivery of valspodarBinkhathlan, Ziyad Unknown Date
No description available.
|
Page generated in 0.2755 seconds