• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 381
  • 127
  • 109
  • 59
  • 22
  • 18
  • 10
  • 10
  • 10
  • 9
  • 8
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 947
  • 205
  • 202
  • 176
  • 162
  • 122
  • 103
  • 99
  • 88
  • 83
  • 81
  • 74
  • 70
  • 68
  • 66
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Transient response of delamination, intersecting and transverse cracks in layered composite plates

Awal, Mohammad A., 1959- January 1989 (has links)
A numerical method is developed to determine the dynamic behavior of delamination and transverse cracks in multilayered plates. The plate is subjected to a time dependent antiplane shear stress field which is acting on the plate surfaces. The interaction of waves diffracted at the crack tip with those reflected at the plate boundaries and transmitted at the material interface makes the problem very complicated, so analytical study of this problem cannot be carried out with our present state of knowledge; hence the problem is solved numerically. The finite element equations are obtained by variational calculus applied in the frequency domain. Thus time intregration schemes are avoided, but time dependent response can still be obtained after inverting the frequency dependent response spectra numerically by Fast Fourier Transform (FFT) routine. Another advantage of the frequency domain analysis is that the resonance frequency can be easily detected from the sharp peaks of the response spectra. The numerical difficulty associated with the singular behavior of the stress field near the crack tip has been avoided by using quarter point elements. The numerical results obtained from this investigation are compared with analytical results to verify the accuracy of the method.
172

Studies of reinforced concrete regions near discontinuities

Cook, William Digby January 1987 (has links)
A non-linear finite element computer program capable of predicting the complete response of two-dimensional reinforced concrete members was developed. This tool which accounts for the stress strain characteristics of cracked concrete was used to predict the responses of a number of members containing discontinuities. These members included corbels, dapped end beams, beams with web holes, and deep beams. The results of tests performed by the author as well as tests performed by other researchers were compared with the non-linear predictions. In addition, simple strut and tie models suitable for designing regions near discontinuities were developed. The predictions obtained by these models were compared with the non-linear finite element predictions and with the test results.
173

Thermal residual stresses in bonded composite repairs on cracked metal structures

Albat, Andreas Michael 05 1900 (has links)
The objective of this research is to determine the thermal residual stresses and strains in bonded composite repairs on cracked metal structures. This work is an essential contribution to a fatigue damage initiation model for bonded composite repair, where knowledge of the initial stress/strain state after an elevated temperature cure is important. Furthermore, this work is an elementary part for the development of a generic certification approach to bonded composite repairs. Accounting properly for thermal residual stresses in test specimens and in real applications will assist in determining the true feasibility of a bonded composite repair. The objective of this work was realized in four stages of research. In the first stage, seven AMRL sandwich type composite bonded repair specimens were manufactured, of which one was instrumented by placing 44 strain gauges at eight planar locations and within five different interfaces. Residual strains at ambient temperature (including both thermal residual strains and other process induced strains) were measured during the manufacturing process. In the second stage, the stress free temperature for the repaired specimen was experimentally determined and the thermal residual strains measured as a function of operating temperature. In the third stage, a theoretical analysis was carried out to estimate the thermal residual stress and strain distributions in various bonded repairs. This analysis also addressed the effect of symmetrical disbonds around the crack. Finally, a finite element analysis was carried out to assess the limitations of the theoretical analysis as well as to provide a more detailed insight into the complex thermal residual stress and strain state of the AMRL sandwich type specimen. During this work it was found that high thermal residual strains (reaching 15% of the yield strain) are present in the bonded repair specimen at ambient temperature. Previous analysis schemes predicted results nearly 60% higher. The thermal residual strain versus temperature measurement showed that only very small changes in thermal residual strains occurred above 90°C leading to a defined effective stress free temperature of 85.8°C for the employed adhesive FM 73M. By utilizing an effective stress free temperature, a linear-elastic approach was used to model thermal residual stresses and strains in composite bonded repairs. Major achievements in the theoretical analysis include a linear-elastic closed form solution for tapered joints and reinforcements without the need for a numerical solution scheme, a stress field prediction ahead of the crack tip for the metal substrate of a bonded repair based on a concise complete solution of the classical fracture mechanics problem of a center crack in an infinite plate and, an extended Rose model for the prediction of the stress intensity factor of a bonded repair with symmetrical disbonds showing the severity of thermal residual stresses especially for partially disbonded composite repairs to cracked metal specimens. The key to precise predictions of thermal residual stresses in bonded composite repairs is the knowledge of the adhesive behaviour at elevated temperatures under thermal residual stress loading. A generic type specimen is presented which allows to investigate the relevant adhesive behaviour.
174

Low Temperature Investigations on Asphalt Binder Performance - A case study on Highway 417 Trial Sections

Togunde, Oluranti Paul 27 May 2008 (has links)
This thesis investigates and documents fundamental studies of highway materials (asphalt engineering properties) especially on different modified asphalt binders and mixtures in order to understand failure mechanisms at low temperature and superior performance of such asphalt binders with the aim of preventing premature cracking on Ontario highways. In addition, seven asphalt binders of different compositions were used as a template for study and this research work is tailored towards Superpave® performance-based specification testing with the aim of improving asphalt pavement performance under various conditions and consequently reducing premature cracking in order to achieve long lasting highways. Based on the actual applied pattern of Superpave® specification criteria, the mechanical responses of the binders are analyzed by extended bending beam rheometer (eBBR), tensile stress ductilometer (Petrotest DDA3®), compact tension test (Instron AsphaltPro®), double-edge-notched tension and single-edge-notched tension (MTS 810 universal testing machine) protocols. The objective of this study entails establishing and developing of a proper procedure for the testing of binders with the aim of ranking (grading) the performance after validation of laboratory and field experiments. Analysis of the results appears to show that the premature distress on the Highway 417 trial sections can be attributed to reversible aging tendency (wax crystallization) at low temperatures coupled with low fatigue resistance of the binders. The results suggest that different polymer modifications had significant influence on the performance of asphalt mix as demonstrated from the results obtained from essential and plastic work of fracture using double-edge-notch-tension test (DENT). Crack tip opening displacement (CTOD) parameter consistently show the performing grading of asphalt binder while compact tension test protocol provides plane strain fracture toughness (K1c) which could be used to rank binders with respect to fracture resistance at low temperature. Hence, CTOD is a promising parameter which can be used to establish performance ranking of the binders. / Thesis (Master, Chemistry) -- Queen's University, 2008-05-26 09:54:23.308
175

PHYSICAL AND CHEMICAL AGING BEHAVIOR OF ASPHALT CEMENTS FROM TWO NORTHERN ONTARIO PAVEMENT TRIALS

KANABAR, AMIT 13 December 2010 (has links)
This thesis documents and discusses the analysis of material properties and pavement performance for Highway 17 and Highway 655 pavement trial sections located in northern Ontario. The object of this work was to compare laboratory-aged material with recovered asphalt cement and to develop an improved chemical aging method that provides asphalt cement that more closely reflects properties after 8-10 years of service. Physical testing of the asphalt cements was done using a bending beam rheometer (BBR) and double-edge-notched tension (DENT) test for laboratory aged material as well as recovered material from the road. The comparison of the regular BBR, extended BBR and elastic recovery test in BBR is also done for the laboratory-aged and recovered material. Two simple modifications to the regular pressure aging vessel (PAV) aging protocol were investigated as possible ways to improve the correlation between field and laboratory material properties. The length of the PAV aging was doubled to 40 hours and the weight for each pan was halved to 25 grams. It was observed that the presently used RTFO/PAV aging protocol does not produce sufficient aging. Hence, the conditions chosen were more severe and therefore are likely to bring the laboratory aging closer to the field aged condition. It was found that both the increase in time and the reduction in weight were able to accomplish the stated objective for most but not all asphalt cements. A separate investigation involved the infrared (IR) analysis of asphalt cements recovered from a large number of contracts in eastern and northeastern Ontario. This study indicated that those asphalts with a largely paraffinic structure (low aromatics index) showed excessive and premature cracking even at lower levels of oxidation (carbonyl index). In contrast, those pavements that were largely spared of thermal distress were constructed with asphalt cements that contained more aromatics (high IR aromatics indices). Aromatics allow the largely aromatic asphaltenes that are formed upon oxidation to remain well peptized rather than flocculated. Peptized asphaltenes allow for good stress relaxation during winter and spring thaw and thus such materials show a reduced tendency for cracking. / Thesis (Master, Chemistry) -- Queen's University, 2010-12-13 11:25:17.522
176

Thermal Cracking Reactions of Model Compounds of Asphaltenes

Alshareef, Ali Haider Unknown Date
No description available.
177

Crack branching in cross-ply composites

La Saponara, Valeria 05 1900 (has links)
No description available.
178

Creep-fatigue crack growth in Cr-Mo-V base material and weldments

Grover, Parmeet S. 05 1900 (has links)
No description available.
179

A microstructural study of HAZ cracking in conventionally and directionally cast polycrystalline and single crystal IN-738 LC

Sanghvi, Jinal Nithin 17 September 2014 (has links)
IN-738 LC, a precipitation hardened nickel based superalloy, containing substantial amounts of Al + Ti contents, is very difficult to weld due to its high susceptibility to HAZ cracking, during welding via conventional fusion welding techniques and subsequent PWHT. The cracking is mainly intergranular in nature and associated with liquation of secondary solidification products (such as MC carbides,  -  eutectic phases), and solid state reaction products ( precipitate particles) that are present along the grain boundaries in the pre-weld material. The current research was to find effective ways to improve weldability of IN-738 LC. Laser welds were produced autogenously on conventionally solidified (CS) and directionally solidified (DS) polycrystalline, and single crystal (SC) IN-738 LC subjected to two preweld heat treatments. Weldability was assessed by measuring the total crack lengths in HAZ. The influence of grain boundaries and heat treatment on extent of cracking in IN-738 LC was studied.
180

TEM crack tip investigations of SCC

Lozano-Perez, Sergio January 2002 (has links)
Over the last few years, TEM has become a powerful technique to study cracks and specially crack tips. However, the number of publications including TEM results has not grown as it was expected. The main reason for this might be difficulties in the sample preparation. In this work we present a novel FIB sample preparation technique which has proved to be an ideal tool for preparing cross sectional samples containing crack tips. The morphology of intergranular stress corrosion cracking (IGSCC) has been investigated in Alloy 600 subjected to constant load and slow strain rate tests in simulated primary circuit pressurized water reactor conditions. Cracks were observed to nucleate at high-angle grain boundaries and propagate to depths of a few tens of micrometer along such boundaries, still in the initiation stage. Electron diffraction, energy dispersive x-ray (EDX) and electron energy loss spectroscopy (EELS) have been used to identify the different corrosion products and precipitates. Elemental mapping was employed to reveal changes in composition in the crack tip area. Major observations at cracks and grain boundaries include: the presence of different oxides in different locations, differences in grain boundary oxides and open crack/free surface oxides. These observations suggest that IGSCC involves oxygen diffusion through a porous oxide region along grain boundaries to the bare metal. This is a novel concept that offers an alternative to previous mechanisms proposed in the literature e.g. H embrittlement, slip-dissolution, etc., for which no supporting evidence has been found.

Page generated in 0.0372 seconds