• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 380
  • 127
  • 109
  • 59
  • 22
  • 18
  • 10
  • 10
  • 10
  • 9
  • 8
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 947
  • 205
  • 202
  • 176
  • 162
  • 122
  • 103
  • 99
  • 88
  • 83
  • 81
  • 74
  • 70
  • 68
  • 66
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Formation and Distribution of Porosity in Al-Si Welds

Legait, Pierre-Alexandre 08 May 2006 (has links)
Aluminum alloys are the subject of increasing interest (in the automotive industry, as well as aircraft industry), aiming to reduce the weight of components and also allowing a profit in term of energy saving. Concerning the assembly, riveting has been widely used in the aircraft industry, whereas welding seems to be promising in the car industry in the case of aluminum alloys. Nevertheless, welding can generate defects, such as porosity or hot cracking, which could limit its development. One of the major problems associated with the welding of aluminum alloys is the formation of gas porosity. Aluminum alloy cleanliness remaining one of the aluminum industry's primary concerns, this project focuses on the formation and distribution of porosity in Al-Si welds. A literature review has been performed, to identify the mechanisms of porosity formation in welds and castings. Porosity distribution in welds has been investigated, based on three different welding techniques: hybrid Laser/MIG welding process, the electron beam welding process, and the MIG dual wire welding process. Porosity distribution results provide information on to the porosity formation mechanisms involved during welding. A complete microstructure, microhardness and EDX analysis have been carried out, to describe and quantify the solidification process within the welds.
152

Stress intensity values for prenotched and precracked, plain concrete beams

Fartash, Mojtaba January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
153

Étude de l'endommagement à court et long terme d'une roche poreuse / Study of short and long term damage of a porous rock

Eslami, Javad 18 March 2010 (has links)
Parmi les différents phénomènes responsables de la déformation à court et long terme des roches poreuses, on s’intéresse dans ce travail à l’endommagement d’un calcaire oolitique en régime semi-fragile et sous différentes conditions hydriques. Dans ce but, nous avons élaboré un dispositif expérimental permettant de mesurer les vitesses des ondes ultrasonores et les déformations ainsi que d’écouter les émissions acoustiques sur le même échantillon, sous chargement mécanique et sous différentes conditions hydriques. En particulier, le dispositif expérimental permet de mesurer simultanément, les vitesses des ondes ultrasonores selon 3 directions de propagation (axiale, latérale et hors axe) et 3 polarisations différentes (P et 2 S perpendiculaires), ceci quasi-instantanément, ce qui in fine permet d’enregistrer les évolutions des vitesses des ondes ultrasonores en continu pendant le chargement. Ces mesures de vitesses permettent d’évaluer le tenseur acoustique à tout moment et donc de suivre en continu l’évolution de l’état d’endommagement de la roche. Le comportement endommageable à court et long terme du calcaire est modélisé à l’aide d’un modèle phénoménologique qui est basé sur une généralisation macroscopique des mécanismes microscopiques mis en évidence par les études expérimentaux (glissement-ouverture des fissures existantes, nucléation de nouvelles fissures, propagation et coalescence de fissures). Le modèle à court terme reproduit assez bien le comportement expérimental instantané de la roche (courbes contrainte-déformations et évolution des modules élastiques). Le modèle de comportement à long terme, découplé dans sa formulation du modèle à court terme, permet de reproduire qualitativement les courbes de fluage expérimentales / Among the different phenomena responsible for the short and long term deformation of porous rocks, we have studied in this work the damage of an oolithic limestone in the semi-brittle regime and under different hydrous conditions. For this purpose, we have developed an experimental device allowing the simultaneous and continuous measurement of strains and elastic wave velocities, as well as acoustic emissions, on the same sample under mechanical loading and under different hydrous conditions. Particularly, the experimental setup allows simultaneous and continuous measurement of the five elastic wave velocities in 3 different directions of propagation (axial, lateral and off-axis) and 3 different directions of polarization (P and 2 perpendicular S), this almost instantaneously. These velocity measurements allow to assess the acoustic tensor at any time and thus to continuously monitor the evolution of the damage of the rock. The short and long term damage behavior of the limestone is modelled thanks to a phenomenological model which is based on a macroscopic generalization of the microscopic mechanisms highlighted by the experimental study (sliding-opening of existing cracks, nucleation of new cracks, propagation and coalescence of cracks). The short-term model reproduces very well the instantaneous behavior (stress-strain curves and evolution of elastic moduli). The long-term model, whose formulation is uncoupled from the short-term model, allows reproducing qualitatively the experimental creep curves
154

Studies of reinforced concrete regions near discontinuities

Cook, William Digby January 1987 (has links)
No description available.
155

Corrosion rate of steel reinforcement in concrete in seawater and influence of concrete crack width

Chang, Zhen-Tian, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2007 (has links)
This thesis reports a research of the corrosion mechanism and corrosion rate of steel reinforcement in concrete. Experimental results are presented to compare the corrosion behaviours of steel reinforcement in two blended-cement concretes in seawater. The experimental program included a study of the influence of crack width on macrocell corrosion, an investigation of the procedure for the determination of polarisation curves of steel in concrete and, an evaluation of the corrosion rate of steel in concrete and the influence of crack width as determined by a new polarisation curve analysis. A mechanism is proposed to interpret the different influences, in both the short and long term, of concrete crack width on the macrocell corrosion rate. This mechanism is based on the finding that the corrosion-spread phenomenon is caused by polarisation effects. An oxygen-depletion mechanism is also proposed to explain the much lower macrocell corrosion rate in the slag cement concrete than that in the flyash cement concrete. The procedure for polarisation testing of steel in concrete is found to be critical to obtaining correct polarisation curves. A twotest procedure is verified to be an appropriate procedure and used in this investigation. Experimental polarisation curves of steel in concrete are found to be very different to those expressed by the kinetic Butler-Volmer equation and, this is considered to be a result of the influence of the passive film on the steel surface in concrete. An empirical polarisation formula is developed and its interpretation is based on the postulation of two parallel kinetic processes occurring at the steel/passive-film/concrete interface; one is the active corrosion process and the other is the film growth/dissolution process. The formula is used to model experimental polarisation curves of steel in concrete through curvefitting analyses. Good curve-fitting results are obtained between the polarisation test curves and model curves. The results are used for evaluation of the corrosion rate and Tafel behaviours of steel in the two concretes and for assessment of the influence of crack width on the corrosion rate within the crack zone.
156

Optimisation of Petaloid Base Dimensions and Process Operating Conditions to Minimize Environmental Stress Cracking in Injection Stretch Blow Moulded PET Bottles

Demirel, Bilal, bilal.demirel@student.rmit.edu.au January 2009 (has links)
ABSTRACT Injection stretch blow moulded PET bottles are the most widely used container type for carbonated soft drinks. PET offers excellent clarity, good mechanical and barrier properties, and ease of processing. Typically, these bottles have a petaloid-shaped base, which gives good stability to the bottle and it is the most appropriate one for beverage storage. However, the base is prone to environmentally induced stress cracking and this a major concern to bottle manufacturers. The object of this study is to explain the occurrence of stress cracking, and to prevent it by optimising both the geometry of the petaloid base and the processing parameters during bottle moulding. A finite element model of the petaloid shape is developed in CATIA V5 R14, and used to predict the von Mises stress in the bottle base for different combinations of three key dimensions of the base: foot length, valley width, and clearance. The combination of dimensions giving the minimum stress is found by a statistical analysis approach using an optimisation and design of experiments software package ECHIP-7. A bottle mould was manufactured according to the optimum base geometry and PET bottles are produced by injection stretch blow moulding (ISBM). In order to minimise the stresses at the bottom of the bottle, the ISBM process parameters were reviewed and the effects of both the stretch rod movement and the temperature profile of the preform were studied by means of the process simulation software package (Blow View version 8.2). Simulated values of the wall thickness, stress, crystallinity, molecular orientation and biaxial ratio in the bottle base were obtained. The process parameters, which result in low stress and uniform material in the bottle base, are regarded as optimum operating conditions. In the evaluation process of the optimum bottle base, bottles with standard (current) and optimized (new) base were produced under the same process conditions via a two-stage ISBM machine. In order to compare both the bottles, environmental stress crack resistance, top load strength, burst pressure strength, thermal stability test as well as crystallinity studies ¬¬¬via modulated differential scanning calorimetry (MDSC) and morphology studies via environmental scanning electron microscopy (ESEM) and optical microscopy were conducted. In this study carried out, the new PET bottle with the optimised base significantly decreased the environmental stress cracking occurrence in the bottom of the bottle. It is found that the bottle with optimised base is stronger than the bottle with standard base against environmental stress cracking. The resistance time against environmental stress cracking are increased by about % 90 under the same operating process conditions used for standard (current) bottles; and by % 170 under the optimised process conditions where the preform re-heating temperature is set to 105 oC.
157

Propane reforming under carboninduced deactivation: catalyst design and reactor operation

Hardiman, Kelfin Martino, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Steam reforming is the most economical and widely-used route for the conversion of light hydrocarbon (such as natural gas) to various valued-added products. This process is commonly carried out over a low-cost alumina-supported nickel catalyst, which often suffers from carbon deposition resulting in loss of active sites, flow and thermal maldistribution, as well as excessive pressure drop. A bimetallic catalyst with improved anti-coking properties was formulated by incorporating the nickel-based system (15% loading) with cobalt metal (5% loading). Two-level factorial design was employed to investigate the effect of major preparation variables, namely impregnation pH value (2-8), calcination temperature (873-973 K), heating rate (5-20 K min-1) and time (1-5 h). The catalysts prepared were subjected to various characterisation techniques to determine key physicochemical properties (i.e. BET area, H2-chemisorption and NH3- TPD acidity). X-ray diffraction revealed that NiO, Co3O4, NiCo2O4 and a proportion of Ni(Co)Al2O4 aluminates were transformed during H2-reduction to active Co and Ni crystallites. TEM images showed an egg yolk profile in the low-pH catalyst suggesting that main deposition site was located in the particle centre, while metal deposition occurred primarily around the particle exterior for the high-pH catalyst. Temperature programmed experiments were carried out to examine the extent of conversion, type of surface species and solid-state kinetics (using the Avrami-Erofeev model) involved during various stages in catalyst life-cycle (calcination, reduction, oxidation and regeneration). Steam reforming analysis suggested that enhanced catalyst activity may be due to synergism in the Co-Ni catalyst. Specifically, the low-pH catalyst exhibited better resistance towards carbon-induced deactivation than the high-pH formulation. The study also provided the first attempt to develop a quantitative relation between catalyst preparation conditions and its performance (activity, product selectivity and deactivation) for steam reforming reaction. Deactivation and reforming kinetic coefficients were simultaneously evaluated from propane reforming conversion-time data under steam-to-carbon ratios of 0.8-1.6 and reaction temperatures between 773-873 K. The time-dependent optimum operational policy derived based on these rate parameters gave better conversion stability despite the heavy carbon deposit. Thermal runs further showed that the catalysts regenerated via two-stage reductive-oxidative coke burn-off exhibited superior surface properties compared to those rejuvenated by a single-step oxidation.
158

An investigation of transition from penetration to deflection in the fracture of bi-material interfaces

Strom, Joshua L. 04 June 2012 (has links)
The problem of determining whether a crack impinging on an interface will penetrate into the substrate or deflect along the interface is vital to the effective design of layered and composite material systems. Of particular interest is the transition between crack propagation by penetration through an interface and deflection along an interface. There has been a great deal of work done on this problem to determine what parameters and formulations are necessary to accurately determine under what conditions penetration-deflection transition will occur. Previous work has studied this problem using stress-based, energy-based, and combined stress-energy-based approaches. Most recently, a combined stress-energy-based approach was implemented via a cohesive-zone formulation; this work showed the conceptual basis and correctness of the cohesive-zone approach, however only presented limited investigation into the behavior penetration-deflection transition. Work presented here expands this investigation on transition, exposing trends and behavior that emerge as certain dimensionless groups are varied. Principles of linear elastic fracture mechanics and, as in previous work, cohesive-theory are applied to a bi-material system in tension through the use of the commercial finite element analysis package ABAQUS. Dimensionless groups, including strength ratios, toughness ratios, fracture-length scales, and substrate toughness scales are varied systematically to show resulting system behavior in a generalized fashion. In using the cohesive-zone method, aspects of previous stress-based and energy-based formulations are reproduced. It is also shown where these formulations cease to be valid, revealing unique and previously undetected transitional interface fracture behavior. The results presented here will prove valuable in interface design as the described generalized trends can be used as references in the design of new layered and composite systems. / Graduation date: 2013
159

Early age performance of latex-modified concrete bridge deck overlays

Sujjavanich, Suvimol 27 November 1996 (has links)
Environmental factors and physical properties of latex modified concrete (LMC) are hypothesized to contribute to early age cracking in bridge deck overlays. Cracking permits the ingress of moisture and aggressive solutions into the substrate and may contribute to other subsequent distresses. Understanding the material properties and mechanisms involved is necessary to minimize these distresses. This research consisted of a two part study: first, the development of LMC strength and fracture properties at ages ranging from 5 hours to 28 days was studied, and secondly, the effects of the environment on LMC distresses were modelled. Environmental conditions: temperature, solar energy, and wind speed were determined from weather records. A fracture mechanics based model, the Fictitious Crack Model (FCM), incorporating finite element analyses and superposition techniques was employed with material properties from the first part of study on LMC performance. Different bilinear strain softening diagrams were used to predict fracture performance at different ages. The predictions agreed well with the test data. The impacts of temperature differentials on crack development were studied. The shrinkage effect was also indirectly incorporated through the temperature analysis. The material properties study indicated significant changes in strength, deformability and fracture properties, particularly during the early age. The developments differ slightly from conventional concrete. Test results indicated a significant improvement in reducing and bridging microcracks, especially in the prepeak-load region. Fracture toughness and deformability increased significantly with time. Fracture energy varied from 2.3 to 133.1 N/m, depending on age, and to some degree, on notch depth ratio. In the second stage, the FCM provided a reasonable prediction for crack initiation and propagation when only temperature effects are of concern. Age, surface conditions and structural restraint strongly affect crack resistance of the overlays. Only slight effects were observed from the overlay thickness in the study range (51-76 mm). Shallow preexisting cracks possibly reduce the crack resistance of the overlay about 30 percent. A prolonged moist cure for 48 hours after placing is suggested to reduce the risk of cracking. With available environmental information, it is possible to develop guidelines for appropriate environmental conditions for LMC bridge deck construction to minimize the risk of early age cracking. / Graduation date: 1997
160

Analysis of thermal fatigue distress of asphalt concrete pavements

Jackson, N. Mike (Nathaniel Michael) 17 June 1992 (has links)
Thermal cracking of asphalt concrete pavements is responsible for millions of dollars in annual maintenance and rehabilitation costs in the United States and Canada. Thermal cracking is typically associated with low temperatures in northern climates and at high elevations. However, another form of thermal cracking, known as thermal fatigue cracking, has been proposed by several researchers as a potential mode of distress in regions with relatively moderate climates but significant differences in high and low daily temperatures. The primary purpose of the research reported herein was to evaluate the possibility of occurrence of the thermal fatigue cracking mode of distress. A secondary objective was to identify a suitable laboratory test procedure to facilitate a mechanistic analysis of the thermal fatigue mode of distress. In light of these objectives, several laboratory test procedures were evaluated in the bituminous materials laboratory at Oregon State University (OSU). The test procedures evaluated included the phenomenological Thermal Stress Restrained Specimen Test (TSRST), the Energy Rate Integral Test (ERIT), the Direct Tension Test under constant rate of extension (DTT), and the Direct Tensile Creep Test (DTCT). The TSRST results were used to evaluate the possibility of occurrence of the thermal fatigue mode of distress. The ERIT, DTT, and DTCT procedures were evaluated with respect to the identification of a suitable laboratory test procedure to facilitate a mechanistic analysis of thermal fatigue. The results from the laboratory test program indicate that thermal fatigue distress in asphalt concrete mixtures is not a viable mode of distress in the absence of environmental aging. Based on the data presented herein and the results of previous researchers, it is evident that distress often attributed to thermal fatigue cracking is more likely the result of low temperature cracking of environmentally aged mixtures, and/or subgrade-related distress; fatigue distress due to thermal loading of semi-restrained pavements does not occur. / Graduation date: 1993

Page generated in 0.0405 seconds