• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 18
  • 10
  • 6
  • 6
  • 2
  • 1
  • Tagged with
  • 141
  • 141
  • 64
  • 53
  • 52
  • 46
  • 24
  • 21
  • 19
  • 18
  • 18
  • 17
  • 17
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Identification of Stiffness Reductions Using Partial Natural Frequency Data

Sokheang Thea (6620237) 15 May 2019 (has links)
In vibration-based damage detection in structures, often changes in the dynamic properties such as natural frequencies, modeshapes, and derivatives of modeshapes are used to identify the damaged elements. If only a partial list of natural frequencies is known, optimization methods may need to be used to identify the damage. In this research, the algorithm proposed by Podlevskyi & Yaroshko (2013) is used to determine the stiffness distribution in shear building models. The lateral load resisting elements are presented as a single equivalent spring, and masses are lumped at floor levels. The proposed method calculates stiffness values directly, i.e., without optimization, from the known partial list of natural frequency data and mass distribution. It is shown that if the number of stories with reduced stiffness is smaller than the number of known natural frequencies, the stories with reduced stiffnesses can be identified. Numerical studies on building models with two stories and four stories are used to illustrate the solution method. Effect of error or noise in given natural frequencies on stiffness estimates and, conversely, sensitivity of natural frequencies to changes in stiffness are studied using 7-, 15-, 30-, and 50-story numerical models. From the studies, it is learnt that as the number of stories increases, the natural frequencies become less sensitive to stiffness changes. Additionally, eight laboratory experiments were conducted on a five-story aluminum structural model. Ten slender columns were used in each story of the specimen. Damage was simulated by removing columns in one, two, or three stories. The method can locate and quantify the damage in cases presented in the experimental studies. It is also applied to a 1/3 scaled 18-story steel moment frame building tested on an earthquake simulator (Suita et al., 2015) to identify the reduction in the stiffness due to fractures of beam flanges. Only the first two natural frequencies are used to determine the reductions in the stiffness since the third mode of the tower is torsional and no reasonable planar spring-mass model can be developed to present all of the translational modes. The method produced possible cases of the softening when the damage was assumed to occur at a single story.
62

Detecção de dano em estruturas utilizando algoritmos genéticos e parâmetros dinâmicos / Structural damage detection using genetic algorithms and dynamic parameters

Villalba Morales, Jesús Daniel 27 March 2009 (has links)
A avaliação do estado das estruturas é um tema de pesquisa muito importante para diversos campos da engenharia e, por isso, estão sendo desenvolvidas metodologias que permitem detectar dano em uma estrutura. O presente trabalho tem como objetivo verificar a aplicabilidade dos algoritmos genéticos (AG) na detecção de dano a partir das mudanças ocorridas, entre as condições com e sem dano, dos parâmetros dinâmicos da estrutura. Três tipos de AGs (binário, real e redundante implícita) são implementados com a finalidade de comparação do desempenho. Os parâmetros dinâmicos da estrutura, sadia e danificada, são determinados a partir do modelo de elementos finitos da estrutura. Medições incompletas e ruidosas foram consideradas visando simular as características da informação obtida por meio de um ensaio dinâmico real. Os AGs implementados são aplicados em estruturas de tipo viga, treliça e pórtico sob diferentes cenários de dano. Resultados mostram o bom desempenho dos AGs para detectar dano em uma estrutura. / The assessment of structural health is an important research topic in many engineering fields and, for that reason, damage detection methodologies are being developed. The goal of this dissertation is to verify the applicability of genetic algorithms (GAs) for detecting damage using dynamic parameters changes between undamaged and damaged condition of the structure. Three different GAs are implemented in order to compare the performance of the algorithms. Undamaged and damaged dynamic parameters are computed using the finite element model of the structure. Incomplete and noisy measurements are considered with the objective of simulating the real condition of the information in a real dynamic test. GAs are applied in some different structures: beam, truss and frame. The results indicate the good performance of the GAs for detecting damage in a structure.
63

Novel Structural Health Monitoring and Damage Detection Approaches for Composite and Metallic Structures

Tashakori, Shervin 11 June 2018 (has links)
Mechanical durability of the structures should be continuously monitored during their operation. Structural health monitoring (SHM) techniques are typically used for gathering the information which can be used for evaluating the current condition of a structure regarding the existence, location, and severity of the damage. Damage can occur in a structure after long-term operating under service loads or due to incidents. By detection of these defects at the early stages of their growth and nucleation, it would be possible to not only improve the safety of the structure but also reduce the operating costs. The main goal of this dissertation is to develop a reliable and cost-effective SHM system for inspection of composite and metallic structures. The Surface Response to Excitation (SuRE) method is one of the SHM approaches that was developed at the FIU mechatronics lab as an alternative for the electromechanical impedance method to reduce the cost and size of the equipment. In this study, firstly, the performance of the SuRE method was evaluated when the conventional piezoelectric elements and scanning laser vibrometer were used as the contact and non-contact sensors, respectively, for monitoring the presence of loads on the surface. Then, the application of the SuRE method for the characterization vii of the milling operation for identical aluminum plates was investigated. Also, in order to eliminate the need for a priori knowledge of the characteristics of the structure, some advanced signal processing techniques were introduced. In the next step, the heterodyne method was proposed, as a nonlinear baseline free, SHM approach for identification of the debonded region and evaluation of the strength of composite bonds. Finally, the experimental results for both methods were validated via a finite element software. The experimental results for both SuRE and heterodyning method showed that these methods can be considered as promising linear and nonlinear SHM approaches for monitoring the health of composite and metallic structures. In addition, by validating the experimental results using FEM, the path for further improvement of these methods in future researches was paved.
64

Active Health Monitoring of Aerospace Composite Structures by Embedded Piezoceramic Transducers

Paget, Christophe January 2001 (has links)
The objectives of the thesis work were to study theinteraction between embedded piezoceramic transducers andcomposite structures as well as determine techniques tosimplify the Lamb waves analysis. Firstly, this studyconsidered the design of the embedded piezoceramic transducers.Secondly, the effect of the embedded transducer on thecomposite strength as well as the influence of the mechanicallyloaded composite on the characteristics of the embeddedtransducer were investigated. Finally, to simplify the analysisof such complex Lamb wave responses, two techniques weredeveloped. They were based on the wavelet technique and amodelling technique, respectively. The design of the embedded piezoceramic transducers wasimproved by reducing the stress concentrations in the compositeas well as in all components constituting the piezoceramictransducer, that is, the piezoceramic element, interconnectorand conductive adhesive. The numerical analysis showed that thethickness of the interconnector had no significant influence onthe stress state of the piezoceramic transducer. It was alsofound that a compliant conductive adhesive reduced the stressconcentration located at the edge of the piezoceramic element.The structural integrity of composites embedded with theimproved piezoceramic transducer was investigated. Theexperiments, performed in tensile and compressive staticloading, indicated that the strength of the composite was notsignificantly reduced by the embedded piezoceramic transducer.Further investigations were conducted to evaluate theperformance of the improved piezoceramic transducer used as aLamb wave generator embedded in composites subjected tomechanical loading. The tests were conducted in tensile andcompressive static loading as well as fatigue loading. Thestudy showed a large working range of the embedded piezoceramictransducer. A post processing technique based on the waveletswas further assessed in the detection of damage and in thedamage size evaluation. A new wavelet basis was developedspecially for processing the Lamb wave response. This method,focused on the wavelet coefficients from the decomposition Lambwave response, showed promising results in evaluating thedamage size. The wavelets offered a sensitive tool to detectsmall damage, compared to other detection methods, improvingthe damage detection capabilities. The other technique wasdevoted to the simplification of the generated Lamb waves bythe use of multi-element transducers. The transducers weredesigned using both a normal-mode expansion and a FE-method.This technique allowed reducing the effect of a Lamb wave modetowards another. This technique was successfully implemented ina damage detection system in composites. <b>Keywords:</b>Embedded piezoceramic, transducer, composite,structural integrity, health monitoring, damage detection, Lambwaves, wavelets, normal-mode expansion, FE-method
65

Vibration-based damage detection of simple bridge superstructures

Zhou, Zhengjie 20 December 2006
This thesis addresses the experimental and numerical study of vibration-based damage detection (VBDD) techniques in structural health monitoring (SHM) of bridge superstructures. The primary goal of SHM is to ascertain the condition or health of a structure so that decisions can be made with regard to the need for remediation. VBDD techniques are global non-destructive evaluation (NDE) techniques. The principle of VBDD techniques is to detect damage using changes in the dynamic characteristics of a structure caused by the damage. The advantage of VBDD techniques over local NDE techniques is that VBDD techniques can assess the condition of an entire structure at once and are not limited to accessible components. <p>Well controlled laboratory experiments on a half-scale, simply supported steel-free bridge deck and two full-scale, simply supported prestressed concrete girders demonstrated that small scale damage at different locations can be reliably detected and located by VBDD techniques using a relatively small number of sensors (accelerometers or strain gauges) and considering changes to only the fundamental mode of vibration. The resolution of damage localization, defined as the length of the window within which damage could be located when the technique predicts it to be located at a particular point, was 70% of measurement point spacing for the deck and 82% for the girders, provided the damage was not located too close to a simple support.<p>To establish the potential of VBDD techniques in the absence of experimental uncertainty, eigenvalue analyses using finite element models of the deck and the girders were undertaken to investigate ability of five VBDD methods to predict the longitudinal location of damage. It was found that when mode shapes were well-defined with a large number of measurement points, the damage location could be determined with great accuracy using any of the five VBDD techniques investigated. The resolution of longitudinal localization of damage was 40 to 80% of the spacing between measurement points when small numbers of measurement points were used, provided the damage was not located too close to a simple support.<p>The experimental study successfully detected small scale damage under forced resonant harmonic excitation but failed in detecting damage under forced random excitation, although the use of random sources of excitation is more practical in field testing. Transient dynamic analyses on the finite element model of the steel-free bridge deck were performed to investigate the implications of using random forced vibrations to characterize mode shapes to be used to detect damage. It was found that the probability of successful damage localization depends upon the severity of the damage, the number of trials used to obtain the average mode shape, the location of damage relative to the nearest sensor, the distance between the damage and the support, and the magnitude of measurement errors. A method based on the repeatability of measured mode shapes is proposed to calculate the probability of successful damage detection and localization.<p>In summary, results of this research demonstrate that VBDD techniques are a promising tool for structural health monitoring of bridge superstructures. However, although these methods have been shown to be capable of effectively detecting small scale damage under well controlled conditions, a significant amount of challenging work remains to be done before they can be applied to real structures.
66

Identification Of Localized Nonlinearity For Dynamic Analysis Of Structures

Aykan, Murat 01 January 2013 (has links) (PDF)
Most engineering structures include nonlinearity to some degree. Depending on the dynamic conditions and level of external forcing, sometimes a linear structure assumption may be justified. However, design requirements of sophisticated structures such as satellites, stabilized weapon systems and radars may require nonlinear behavior to be considered for better performance. Therefore, it is very important to successfully detect, localize and parametrically identify nonlinearity in such cases. In engineering applications, the location of nonlinearity and its type may not be always known in advance. Furthermore, as the structure will be excited from only a few coordinates, the frequency response function matrices will not be complete. In order to parametrically identify more than one type of nonlinearity which may co-exist at the same location with the above mentioned limitations, a method is proposed where restoring force surface plots are used which are evaluated by describing function inversion. Then, by reformulating this method, a second method is proposed which can directly evaluate the total describing function of more than one type of nonlinearity which may co-exist at the same location without using any linear frequency response function matrix. It is also aimed in this study to use the nonlinearity localization formulations for damage localization purposes. The validation of the methods developed in this study is demonstrated with case studies based on simulated experiments, as well as real experiments with nonlinear structures and it is concluded that the methods are very promising to be used in engineering structures.
67

Vibration-based damage detection of simple bridge superstructures

Zhou, Zhengjie 20 December 2006 (has links)
This thesis addresses the experimental and numerical study of vibration-based damage detection (VBDD) techniques in structural health monitoring (SHM) of bridge superstructures. The primary goal of SHM is to ascertain the condition or health of a structure so that decisions can be made with regard to the need for remediation. VBDD techniques are global non-destructive evaluation (NDE) techniques. The principle of VBDD techniques is to detect damage using changes in the dynamic characteristics of a structure caused by the damage. The advantage of VBDD techniques over local NDE techniques is that VBDD techniques can assess the condition of an entire structure at once and are not limited to accessible components. <p>Well controlled laboratory experiments on a half-scale, simply supported steel-free bridge deck and two full-scale, simply supported prestressed concrete girders demonstrated that small scale damage at different locations can be reliably detected and located by VBDD techniques using a relatively small number of sensors (accelerometers or strain gauges) and considering changes to only the fundamental mode of vibration. The resolution of damage localization, defined as the length of the window within which damage could be located when the technique predicts it to be located at a particular point, was 70% of measurement point spacing for the deck and 82% for the girders, provided the damage was not located too close to a simple support.<p>To establish the potential of VBDD techniques in the absence of experimental uncertainty, eigenvalue analyses using finite element models of the deck and the girders were undertaken to investigate ability of five VBDD methods to predict the longitudinal location of damage. It was found that when mode shapes were well-defined with a large number of measurement points, the damage location could be determined with great accuracy using any of the five VBDD techniques investigated. The resolution of longitudinal localization of damage was 40 to 80% of the spacing between measurement points when small numbers of measurement points were used, provided the damage was not located too close to a simple support.<p>The experimental study successfully detected small scale damage under forced resonant harmonic excitation but failed in detecting damage under forced random excitation, although the use of random sources of excitation is more practical in field testing. Transient dynamic analyses on the finite element model of the steel-free bridge deck were performed to investigate the implications of using random forced vibrations to characterize mode shapes to be used to detect damage. It was found that the probability of successful damage localization depends upon the severity of the damage, the number of trials used to obtain the average mode shape, the location of damage relative to the nearest sensor, the distance between the damage and the support, and the magnitude of measurement errors. A method based on the repeatability of measured mode shapes is proposed to calculate the probability of successful damage detection and localization.<p>In summary, results of this research demonstrate that VBDD techniques are a promising tool for structural health monitoring of bridge superstructures. However, although these methods have been shown to be capable of effectively detecting small scale damage under well controlled conditions, a significant amount of challenging work remains to be done before they can be applied to real structures.
68

Active Health Monitoring of Aerospace Composite Structures by Embedded Piezoceramic Transducers

Paget, Christophe January 2001 (has links)
<p>The objectives of the thesis work were to study theinteraction between embedded piezoceramic transducers andcomposite structures as well as determine techniques tosimplify the Lamb waves analysis. Firstly, this studyconsidered the design of the embedded piezoceramic transducers.Secondly, the effect of the embedded transducer on thecomposite strength as well as the influence of the mechanicallyloaded composite on the characteristics of the embeddedtransducer were investigated. Finally, to simplify the analysisof such complex Lamb wave responses, two techniques weredeveloped. They were based on the wavelet technique and amodelling technique, respectively.</p><p>The design of the embedded piezoceramic transducers wasimproved by reducing the stress concentrations in the compositeas well as in all components constituting the piezoceramictransducer, that is, the piezoceramic element, interconnectorand conductive adhesive. The numerical analysis showed that thethickness of the interconnector had no significant influence onthe stress state of the piezoceramic transducer. It was alsofound that a compliant conductive adhesive reduced the stressconcentration located at the edge of the piezoceramic element.The structural integrity of composites embedded with theimproved piezoceramic transducer was investigated. Theexperiments, performed in tensile and compressive staticloading, indicated that the strength of the composite was notsignificantly reduced by the embedded piezoceramic transducer.Further investigations were conducted to evaluate theperformance of the improved piezoceramic transducer used as aLamb wave generator embedded in composites subjected tomechanical loading. The tests were conducted in tensile andcompressive static loading as well as fatigue loading. Thestudy showed a large working range of the embedded piezoceramictransducer. A post processing technique based on the waveletswas further assessed in the detection of damage and in thedamage size evaluation. A new wavelet basis was developedspecially for processing the Lamb wave response. This method,focused on the wavelet coefficients from the decomposition Lambwave response, showed promising results in evaluating thedamage size. The wavelets offered a sensitive tool to detectsmall damage, compared to other detection methods, improvingthe damage detection capabilities. The other technique wasdevoted to the simplification of the generated Lamb waves bythe use of multi-element transducers. The transducers weredesigned using both a normal-mode expansion and a FE-method.This technique allowed reducing the effect of a Lamb wave modetowards another. This technique was successfully implemented ina damage detection system in composites.</p><p><b>Keywords:</b>Embedded piezoceramic, transducer, composite,structural integrity, health monitoring, damage detection, Lambwaves, wavelets, normal-mode expansion, FE-method</p>
69

A Novel Technique for Structural Health Assessment in the Presence of Nonlinearity

Al-Hussein, Abdullah Abdulamir January 2015 (has links)
A novel structural health assessment (SHA) technique is proposed. It is a finite element-based time domain nonlinear system identification technique. The procedure is developed in two stages to incorporate several desirable features and increase its implementation potential. First, a weighted global iteration with an objective function is introduced in the unscented Kalman filter (UKF) procedure in order to obtain stable, convergent, and optimal solution. Furthermore, it also improves the capability of the UKF procedure to identify a large structural system using only a short duration of responses measured at a limited number of dynamic degrees of freedom (DDOFs). The combined procedure is denoted as unscented Kalman filter with weighted global iteration (UKF-WGI). Then, UKF-WGI is integrated with iterative least-squares with unknown input (ILS-UI) in order to increase its implementation potential. The substructure concept is also incorporated in the procedure. The integrated procedure is denoted as unscented Kalman filter with unknown input and weighted global iteration (UKF-UI-WGI). The two most important features of the method are that it does not need information on input excitation and uses only limited number of noise-contaminated response information to identify structural systems. Also, the method is able to identify the defects at the local element level by tracking the changes in the stiffness of the structural elements in the finite element representation. The UKF-UI-WGI procedure is implemented in two stages. In Stage 1, based on the location of input excitation, the substructure is selected. Using only responses at all DDOFs in the substructure, ILS-UI can identify the input excitation time-histories, stiffness parameters of all the elements in the substructure, and two Rayleigh damping coefficients. The outcomes of the first stage are necessary to initiate UKF-WGI. Using the information from Stage 1, the stiffness parameters of all the elements in the structure are identified using UKF-WGI in Stage 2. To demonstrate the effectiveness of the procedure, health assessment of relatively large structural systems is presented. Small and relatively large defects are introduced at different locations in the structure and the capability of the method to detect the health of the structure is examined. The optimum number and location of measured responses are also investigated. It is demonstrated that the method is capable of identifying defect-free and defective states of the structures using minimum information. Furthermore, it can locate defect spot within a defective element accurately. The comparative studies are also conducted between the proposed methods and available methods in the literature. First, it is between the UKF-WGI and extended Kalman filter with weighted global iteration (EKF-WGI) procedure. Then, it is between UKF-UI-WGI and generalized iterative least-squares extended Kalman filter with unknown input (GILS-EKF-UI) procedure, developed earlier by the research team. It is demonstrated that the proposed UKF-based procedures are superior to the EKF-based procedures for SHA.
70

Πολυμερή με βελτιωμένες μηχανικές και ηλεκτρικές ιδιότητες για παρακολούθηση βλάβης με χρήση πολυφλοιϊκών νανοσωληνίσκων άνθρακα

Φιαμέγκου, Ελένη 02 May 2008 (has links)
Σκοπός της παρούσας Πτυχιακής Εργασίας είναι ανάπτυξη μιας διαδικασίας παρασκευής νανοσύνθετων εποξικής ρητίνης/ πολλαπλών νανοσωληνίσκων άνθρακα (MWCNT) σε ένα εύρος περιεκτικοτήτων από 0.1 έως και 1 % κατά βάρος (κ.β) MWCNT. Τα εμποτισμένων δοκίμια έναντι αυτών της καθαρής ρητίνης παρουσίασαν ενισχυμένες μηχανικές ιδιότητες όπως αντοχή σε εφελκυσμό και αυξημένο μέτρο ελαστικότητας. Η αύξηση αυτή μπορεί να αποδοθεί στο υψηλό λόγο μήκους /διαμέτρου καθώς και στην μεγάλη ελεύθερη επιφάνεια των νανοσωληνίσκων (CNTs). Επίσης από τα πειράματα δυναμικής ανάλυσης παρατηρήθηκε αύξηση της θερμοκρασίας υαλώδους μετάβασης με την αύξηση της περιεκτικότητας των CNTs. Στα πλαίσια της ίδιας εργασίας μελετήθηκαν οι ηλεκτρικές ιδιότητες καθώς και οι αισθητήριες ιδιότητες των MWCNT και εξερευνήθηκε η χρήση τους ως νανοαισθητήρες για την παρακολούθηση βλάβης στην εμποτισμένη εποξική ρητίνη. Για τον σκοπό αυτό πραγματοποιήθηκαν πειράματα φόρτισης-αποφόρτισης μονοαξονικού εφελκυσμού με ταυτόχρονη παρακολούθηση της ηλεκτρικής αντίστασης του δοκιμίου. Από την παραπάνω διαδικασία παρατηρήθηκε πως όσο μεγαλύτερη είναι η περιεκτικότητα CNTs στην ρητίνη, τόσο μεγαλύτερη είναι η ευαισθησία της ηλεκτρικής αντίστασης στις αλλαγές του εφαρμοζόμενου φορτίου. Σημειώνεται επίσης πως η εμποτισμένη σε CNTs εποξική ρητίνη παρουσιάζει ηλεκτρική αγωγιμότητα παρουσιάζοντας σε περιεκτικότητα 1% κ.β συμπεριφορά αγωγού, γεγονός που οφείλεται στην αγώγιμη φύση των CNTs. Από τις μετρήσεις ηλεκτρικής αγωγιμότητας παρατηρήθηκε πως το «κατώφλι» αγωγιμότητας επιτυγχάνεται σε περιεκτικότητα 0.3% κ.β MWCNT ενώ, επιβεβαιώνεται η ισχύς της θεωρίας «διήθησης» : σ~ (V-Vc)t δίνοντας τιμή «κρίσιμου» εκθέτη t ίση με 2.05. / The goal of the present study is the development of a manufacturing process of epoxy resin compounds with several multi-wall carbon nanotube (MWCNT) contents per weight. Enhanced mechanical properties of the doped specimens epoxy against the neat epoxy testpieces e.g. tensile strength and modulus of elasticity was achieved and attributed to the high surface area and high aspect ratio of the nanotubes. Moreover the dynamic properties of the nano-doped epoxy polymers were investigated and the relation of glass transition temperature with increasing CNT content was found to be inverse. Another goal of the present work was to use the electrical/sensing properties of MWCNTs as a nano-sensor for the damage detection within the doped matrix material. Therefore loading-unloading tensile tests were performed, along with on-line conductivity monitoring for the nano-doped epoxy polymers. It was noted that all the nano-doped samples were more sensitive to load changes and thus resistance changes. The higher the CNT content per weight was, the higher the sensitivity in load changes. The conductive nature of CNTs has produced conductive epoxy polymers, which exhibit “percolation threshold” at the content of 0.3% wt. MWCNT and enhanced sensing properties. The measurements of electrical conductivity confirm the validity of “percolation” theory: σ~ (V-Vc)t with the critical exponent t equal to 2.05.

Page generated in 0.0531 seconds