• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 3
  • Tagged with
  • 18
  • 18
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Características de escoamentos decorrentes de diferenças de densidades / Characteristics of flows due density differences

Silva, Selma Vargas da 19 December 2002 (has links)
Neste trabalho analisam-se escoamentos de correntes de densidade tipo plumas, intrusões e corrente de fundo em torno de obstáculos. Os experimentos foram realizados em duas fases. Na primeira fase dos ensaios, a estratificação ambiente e a obtenção das correntes foram obtidas variando-se a densidade de soluções de água e sal. A visualização das correntes foi feita utilizando-se permanganato de potássio e sua dispersão foi obtida através do registro em câmera filmadora. Na segunda fase, os ensaios de plumas foram realizados com equipamento a laser de vapor de cobre (LVC) envolvendo o método de velocimetria a laser por processamento de imagens (VLPI). Nesta fase, observou-se grande dificuldade na visualização das partículas do escoamento e foi necessário a confecção de um sistema de aquecimento de água para a obtenção do escoamento superficial. É apresentado um modelo numérico em linguagem FORTRAN baseado no método das diferenças finitas para discretização da equação de Navier-Stokes e a obtenção de velocidades longitudinais e transversais. Observou-se, neste trabalho, a importância da visualização do fenômeno de correntes superficiais e intrusivas, tendo em vista a extrema sensibilidade destes fenômenos para com as condições de trabalho (alterações sutis geram grandes diferenças no escoamento obtido). Pode-se concluir que o método VLPI produz resultados satisfatórios para o campo de vetores de velocidade. As correntes intrusivas apresentaram configurações diversas para mesmas condições de escoamento, o que demonstra a necessidade de maiores estudos. O modelo numérico se mostrou coerente para determinados experimentos, mas as condições particulares da entrada dos reservatórios mostra que há a necessidade de implementações para uma forma mais abrangente de situações. / Unstable gravity currents flows like buoyant surface jet (BSJ), intrusions and dense currents around obstacles are analysed in this research. The experiments were performed in two phases. In the first one, the environmental stratification as well as the current flows were obtained varying the density of the water and salt solutions. The current visualization were possible by the use of the KMnO4 dye and its dispersion was recorded by video camera. In the second phase, the runs with plumes were evaluated with a laser vapour copper (LVC) equipment using the processing image velocimetry (PIV) method. In this phase, it was observed a great difficulty in the particle flow visualization and it was necessary a war water system to simulate overflow. It\'s presented a numerical model in fortran language based in the finit difference method to discretisize the Navier-Stokes equation and obtain the transversal and longitudinal velocities. It was noted in this research, the relevance of the visualization in overflows and intrusive flows because of the extreme sensitivity of these phenomenos to work conditions (slightly modifications generates great differences in the flow behaviour). It concludes that the PIV method results good data for vectors velocity field. The intrusive currents show many configurations to the same flow conditions which requires further investigations. The numerical model has shown coherance to particular experiments, but source particularities justifies the necessity of implementation to larger situations.
12

A model for the convective circulation in side arms of cooling lakes.

Brocard, Dominique Nicholas January 1977 (has links)
Thesis. 1977. Ph.D.--Massachusetts Institute of Technology. Dept. of Civil Engineering. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography : leaves 231-234. / Ph.D.
13

Características de escoamentos decorrentes de diferenças de densidades / Characteristics of flows due density differences

Selma Vargas da Silva 19 December 2002 (has links)
Neste trabalho analisam-se escoamentos de correntes de densidade tipo plumas, intrusões e corrente de fundo em torno de obstáculos. Os experimentos foram realizados em duas fases. Na primeira fase dos ensaios, a estratificação ambiente e a obtenção das correntes foram obtidas variando-se a densidade de soluções de água e sal. A visualização das correntes foi feita utilizando-se permanganato de potássio e sua dispersão foi obtida através do registro em câmera filmadora. Na segunda fase, os ensaios de plumas foram realizados com equipamento a laser de vapor de cobre (LVC) envolvendo o método de velocimetria a laser por processamento de imagens (VLPI). Nesta fase, observou-se grande dificuldade na visualização das partículas do escoamento e foi necessário a confecção de um sistema de aquecimento de água para a obtenção do escoamento superficial. É apresentado um modelo numérico em linguagem FORTRAN baseado no método das diferenças finitas para discretização da equação de Navier-Stokes e a obtenção de velocidades longitudinais e transversais. Observou-se, neste trabalho, a importância da visualização do fenômeno de correntes superficiais e intrusivas, tendo em vista a extrema sensibilidade destes fenômenos para com as condições de trabalho (alterações sutis geram grandes diferenças no escoamento obtido). Pode-se concluir que o método VLPI produz resultados satisfatórios para o campo de vetores de velocidade. As correntes intrusivas apresentaram configurações diversas para mesmas condições de escoamento, o que demonstra a necessidade de maiores estudos. O modelo numérico se mostrou coerente para determinados experimentos, mas as condições particulares da entrada dos reservatórios mostra que há a necessidade de implementações para uma forma mais abrangente de situações. / Unstable gravity currents flows like buoyant surface jet (BSJ), intrusions and dense currents around obstacles are analysed in this research. The experiments were performed in two phases. In the first one, the environmental stratification as well as the current flows were obtained varying the density of the water and salt solutions. The current visualization were possible by the use of the KMnO4 dye and its dispersion was recorded by video camera. In the second phase, the runs with plumes were evaluated with a laser vapour copper (LVC) equipment using the processing image velocimetry (PIV) method. In this phase, it was observed a great difficulty in the particle flow visualization and it was necessary a war water system to simulate overflow. It\'s presented a numerical model in fortran language based in the finit difference method to discretisize the Navier-Stokes equation and obtain the transversal and longitudinal velocities. It was noted in this research, the relevance of the visualization in overflows and intrusive flows because of the extreme sensitivity of these phenomenos to work conditions (slightly modifications generates great differences in the flow behaviour). It concludes that the PIV method results good data for vectors velocity field. The intrusive currents show many configurations to the same flow conditions which requires further investigations. The numerical model has shown coherance to particular experiments, but source particularities justifies the necessity of implementation to larger situations.
14

The thermal evolution and dynamics of pyroclasts and pyroclastic density currents

Benage, Mary Catherine 21 September 2015 (has links)
The thermal evolution of pyroclastic density currents (PDCs) is the result of entrainment of ambient air, particle concentration, and initial eruptive temperature, which all impact PDC dynamics and their hazards, such as runout distance. The associated hazards and opaqueness of PDCs make it impossible for in-situ entrainment efficiencies or concentration measurements that would provide critical information on the thermal evolution and physical processes of PDCs. The thermal evolution of explosive eruptive events such as volcanic plumes and pyroclastic density currents (PDCs) is reflected in the textures of the material they deposit. A multiscale model is developed to evaluate how the rinds of breadcrust bombs can be used as a unique thermometer to examine the thermal evolution of PDCs. The multiscale, integrated model examines how bubble growth, pyroclast cooling, and dynamics of PDC and projectile pyroclasts form unique pyroclast morphology. Rind development is examined as a function of transport regime (PDC and projectile), transport properties (initial current temperature and current density), and pyroclast properties (initial water content and radius). The model reveals that: 1) rinds of projectile pyroclasts are in general thicker and less vesicular than those of PDC pyroclasts; 2) as the initial current temperature decreases due to initial air entrainment, the rinds on PDC pyroclasts progressively increase in thickness; and 3) rind thickness increases with decreasing water concentration and decreasing clast radius. Therefore, the modeled pyroclast’s morphology is dependent not only on initial water concentration but also on the cooling rate, which is determined by the transport regime. The developed secondary thermal proxy is then applied to the 2006 PDCs from the Tungurahua eruption to constrain the entrainment efficiency and thermal evolution of PDCs. A three-dimensional multiphase Eulerian-Eulerian-Lagrangian (EEL) model is coupled to topography and field data such as paleomagnetic data and rind thicknesses of collected pyroclasts to study the entrainment efficiency and thus the thermal history of PDCs at Tungurahua volcano, Ecuador. The modeled results that are constrained with observations and thermal proxies demonstrate that 1) efficient entrainment of air to the upper portion of the current allows for rapid cooling, 2) the channelized pyroclastic density currents may have developed a stable bed load region that was inefficient at cooling and 3) the PDCs had temperatures of 600-800K in the bed load region but the upper portion of the currents cooled down to ambient temperatures. The results have shown that PDCs can be heterogeneous in particle concentration, temperature, and dynamics and match observations of PDCs down a volcano and the thermal proxies. Lastly, the entrainment efficiencies of PDCs increases with increasing PDC temperature and entrainment varies spatially and temporally. Therefore, the assumption of a well-mixed current with a single entrainment coefficient cannot fully solve the thermal evolution and dynamics of the PDC.
15

The effect of vertical mixing on along channel transport in a layered flow /

Cudaback, Cynthia Nova. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographic references (p. [116]-122).
16

Mathematical modelling of turbidity currents

Fay, Gemma Louise January 2012 (has links)
Turbidity currents are one of the primary means of transport of sediment in the ocean. They are fast-moving, destructive fluid flows which are able to entrain sediment from the seabed and accelerate downslope in a process known as `ignition'. In this thesis, we investigate one particular model for turbidity currents; the `Parker model' of Parker, Pantin and Fukushima (1986), which models the current as a continuous sediment stream and consists of four equations for the depth, velocity, sediment concentration and turbulent kinetic energy of the flow. We propose two reduced forms of the model; a one-equation velocity model and a two-equation shallow-water model. Both these models give an insight into the dynamics of a turbidity current propagating downstream and we find the slope profile to be particularly influential. Regions of supercritical and subcritical flow are identified and the model is solved through a combination of asymptotic approximations and numerical solutions. We next consider the dynamics of the four-equation model, which provides a particular focus on Parker's turbulent kinetic energy equation. This equation is found to fail catastrophically and predict complex-valued solutions when the sediment-induced stratification of the current becomes large. We propose a new `transition' model for turbulent kinetic energy which features a switch from an erosional, turbulent regime to a depositional, stably stratified regime. Finally, the transition model is solved for a series of case studies and a numerical parameter study is conducted in an attempt to answer the question `when does a turbidity current become extinct?'.
17

[en] VALIDATION OF SIMPLIFIED MATHEMATICAL MODEL FOR TURBIDITY CURRENTS / [pt] VERIFICAÇÃO DE UM MODELO MATEMÁTICO SIMPLIFICADO PARA CORRENTES DE TURBIDEZ

LUIZ FERNANDO ROCHA BITTON 18 August 2008 (has links)
[pt] A combinação de modelos numéricos com modelos computacionais tem contribuido muito para o melhor entendimento matemático de fluxos gravitacionais, porém esses modelos não podem substituir a análise através de trabalhos experimentais. O uso de modelos físicos em escala provou ser essencial na validação de equações para modelagem de correntes de turbidez. Com o objetivo de diminuir o nível de dificuldade em modelar numericamente essas correntes e de gerar modelos computacionais de alto desempenho, algumas simplificações foram feitas durante o desenvolvimento das equações de velocidade. Dessa forma, para provar que tais simplificações não iriam alterar os resultados numéricos do modelo, foram realizados inúmeros experimentos, coletando informações sobre a evolução espaço- temporal de velocidades das correntes de turbidez não- confinadas com e sem partículas. Comparando os resultados do modelo numérico com os do modelo físico, foi concluído que, infelizmente, as aproximações influenciaram os resultados. Contudo, os dados e a comparação visual entre as simulações também revelaram alguns resultados encorajadores, os quais estimularão pesquisas futuras para se melhorar a precisão da equação de velocidade utilizada no modelo numérico. / [en] The combination between numerical and computer models has improved dramatically the mathematical understanding of gravity currents; however, these models can not replace the analysis by experimental work. The use of scaled analogue models, or physical models, proved to be essential in validating velocity equations for turbidity currents. In order to reduce the level of difficulty to model mathematically these currents, some approximations were applied during the development of the velocity equation. Therefore, willing to prove that these approximations would not compromise the numerical results, innumerous experiments were performed to acquire a spatio-temporal velocity evolution database for both unconfined particle free and particulate turbidity flows. Comparing the results from the numerical and physical simulations, it was concluded that, unfortunately, the approximations have influenced the numerical results. Nevertheless, the data and visual comparisons between the simulations also revealed some encouraging results, which will stimulate some future research to improve the accuracy of the depth-averaging velocity equation.
18

Mechanisms of axis-switching and saddle-back velocity profile in laminar and turbulent rectangular jets

Chen, Nan 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / We numerically investigate the underlying physics of two peculiar phenomena, which are axis-switching and saddle-back velocity profile, in both laminar and turbulent rectangular jets using lattice Boltzmann method (LBM). Previously developed computation protocols based on single-relaxation-time (SRT) and multiple-relaxation-time (MRT) lattice Boltzmann equations are utilized to perform direct numerical simulation (DNS) and large eddy simulation (LES) respectively. In the first study, we systematically study the axis-switching behavior in low aspect-ratio (AR), defined as the ratio of width over height, laminar rectangular jets with <italic>AR=1</italic> (square jet), 1.5, 2, 2.5, and 3. Focuses are on various flow properties on transverse planes downstream to investigate the correlation between the streamwise velocity and secondary flow. Three distinct regions of jet development are identified in all the five jets. The <italic>45&deg</italic> and <italic>90&deg</italic> axis-switching occur in characteristic decay (CD) region consecutively at the early and late stage. The half-width contour (HWC) reveals that <italic>45&deg</italic> axis-switching is mainly contributed by the corner effect, whereas the aspect-ratio (elliptic) feature affects the shape of the jet when <italic>45&deg</italic> axis-switching occurs. The close examinations of flow pattern and vorticity contour, as well as the correlation between streamwise velocity and vorticity, indicate that <italic>90&deg</italic> axis-switching results from boundary effect. Specific flow patterns for <italic>45&deg</italic> and <italic>90&deg</italic> axis-switching reveal the mechanism of the two types of axis-switching respectively. In the second study we develop an algorithm to generate a turbulent velocity field for the boundary condition at jet inlet. The turbulent velocity field satisfies incompressible continuity equation with prescribed energy spectrum in wave space. Application study of the turbulent velocity profile is on two turbulent jets with <italic>Re=25900</italic>. In the jets with <italic>AR=1.5</italic>, axis-switching phenomenon driven by the turbulent inlet velocity is more profound and in better agreement with experimental examination over the laminar counterpart. Characteristic jet development driven by both laminar and turbulent inlet velocity profile in square jet (<italic>AR=1</italic>) is also examined. Overall agreement of selected jet features is good, while quantitative match for the turbulence intensity profiles is yet to be obtained in future study. In the third study, we analyze the saddle-back velocity profile phenomenon in turbulent rectangular jets with AR ranging from 2 to 6 driven by the developed turbulent inlet velocity profiles with different turbulence intensity (<italic>I</italic>). Saddle-back velocity profile is observed in all jets. It has been noted that the saddle-back's peak velocities are resulted from the local minimum mixing intensity. Peak-center difference <italic>&Delta<sub>pc</sub></italic> and profound saddle-back (PSB) range are defined to quantify the saddle-back level and the effects of AR and <italic>I</italic> on saddle-back profile. It is found that saddle-back is more profound with larger AR or slimmer rectangular jets, while its relation with <italic>I</italic> is to be further determined.

Page generated in 0.029 seconds