Spelling suggestions: "subject:"[een] DIELECTRIC LOADED WAVEGUIDE"" "subject:"[enn] DIELECTRIC LOADED WAVEGUIDE""
1 |
[pt] ESPECTROSCOPIA DE RESSONÂNCIA DE PLASMON DE SUPERFÍCIE PARA A CARACTERIZAÇÃO DE NANOPARTÍCULAS, FILMES FINOS ORGÂNICOS E MATERIAIS 2-D / [en] SURFACE PLASMON RESONANCE SPECTROSCOPY FOR THE CHARACTERIZATION OF NANOPARTICLES, ORGANIC THIN FILM AND 2-D MATERIALSQUAID ZAMAN 02 December 2019 (has links)
[pt] Sensores baseados na espectroscopia de ressonância de plásmons de superfície (SPR) são dispositivos fotônicos amplamente usados para a detecção ultra sensível de gases e analitos (bio) químicos sem marcadores. O mecanismo de sensoriamento baseia-se na sensitividade do campo eletromagnético evanescente associado aos Polaritons de Plásmon de Superfície (SPP) propagando-se na interface metal-dielétrica, o qual age como uma eficiente nanosonda no meio exterior. Mesmo com resultados excelentes em aplicações de sensoriamento em tempo real, a espectroscopia SPR encontra severas limitações nas caracterizações elipsométricas de filmes finos com espessuras maiores que alguns nm. As limitações são principalmente associadas a instabilidade no longo prazo das propriedades físico-químicas das interfaces metal-dielétricas dos dispositivos SPR, a qual prejudica a acurácia na determinação simultânea da espessura e do índice de refração dos filmes finos que estão sendo investigados.
Por estas razões, a primeira parte da tese é dedicada ao estudo da degradação e do processo de estabilização das interfaces metal-dielétricas de diferentes plataformas de sensoriamento SPR, tanto no ar como em ambiente aquoso. As plataformas de sensoriamento foram monitoradas por espectroscopia SPR e microscopia de força atômica (AFM). Diferentes configurações de interfaces metal-dielétricas foram analisadas, tanto em termos de camadas de adesão, tipo de metal que suporta a onda de plasma, e supercamadas, com o objetivo de otimizar a estabilidade e a sensitividade de plataformas SPR monomodais e multimodais. As melhores performances foram obtidas quando uma interface metal-dielétrica com baixo amortecimento eletromagnético é criada através da deposição de uma monocamada adesiva de (3-Mercaptopropyl) trimethoxysilane (MPTS), e quando uma monocamada de grafeno (SLG) é transferida como supercamada na cima de um filme fino metálico de ouro.
O estudo do processo de estabilização das plataformas SPR foi a base para o desenvolvimento da segunda parte da tese, onde nós mostramos as potencialidades da espectroscopia SPR na configuração Kretschmann para a acurada caracterização elipsométrica de três classes de materiais deferentes: nanopartículas de ouro (AuNPs), filmes finos de materiais orgânicos luminescentes, e grafeno. Para determinar simultaneamente a espessura e o índice de refração dos filmes finos, foram adoptados os métodos das duas cores e/ou dois modos, esse último realizado através do uso de guias de onda carregadas por dielétricos (DLWGs) com interfaces simétricas do tipo Au/MPTS/SiO2.
Por fim, estas três classes de materiais foram usadas no desenvolvimento de novos sensores ópticos SPR de interesse biológico e ambiental. A prova de conceito de um dosímetro de raios UVA baseado em espectroscopia SPR é demonstrado através do monitoramento das modificações da espessura e índice de refração induzidas pela radiação em filmes finos de tris (8-hydroxyquinoline) (Alq3) e tris (dibenzoylmethane) mono (1,10-phenanthroline) europium (III) (Eu (dbm)3Phen).
AuNPs com um diâmetro nominal de 15nm estabilizadas por citrato de sódio, foram usadas para demonstrar o princípio de funcionamento de medidores de tamanho de partículas e contadores superficiais de AuNPs baseados na espectroscopia SPR de duas cores. Neste último caso, nós mostramos experimentalmente que as DLWG podem ser usadas como acurados nanocontadores para densidades superficiais entre 20 e 200 NP/um2, com importantes resultados para a metrologia óptica e a emergente espectroscopia SPR amplificada por nanopartículas (PA-SPR).
Por último, mostramos o utilizo da interface Au/SLG para a detecção ultra-sensível de íons de metais pesados de interesse ambiental, com um limite de detecção (LoD) sem precedentes da ordem de uma parte por bilhão (ppb). Os resultados experimentais suportam as previsões teóricas sobre a afinidade de sítios particulares do grafeno infinito para íons de metais pesados, e a possibilidade de aumentar a sensibilidade dos dispositivos SPR através da transferência de elétrons assistida por plásmons entre o filme de metal e o SLG. / [en] Surface Plasmon Resonance (SPR) Spectroscopy based sensors have emerged as a versatile and widely used optical tool for the label free ultrasensitive detection of gas and (bio) chemical analytes. The sensing mechanism is relying on the sensitivity of the evanescent field of the Surface Plasmon Polariton (SPP) wave propagating at metal dielectric interface, which acts as an efficient optical nanoprobe in the external medium. Despite the excellent results in the real-time sensing applications, SPR Spectroscopy has found limited applications in the accurate ellipsometric characterization of thin films with thickness higher than a few nm. The limitations are mainly associated with the long-time instability of the metal-dielectric interfaces of the SPR devices, which deteriorates the accuracy in the simultaneous determination of thickness and refractive index of the thin films under investigation.
For these reasons, the first part of the dissertation is dedicated to the study of the degradation and stabilization process of the metal-organic interfaces of different SPR sensing platforms, in both air and water environment. The sensing platforms were monitored by SPR spectroscopy and atomic force microscopy (AFM). Different metal-dielectric interfaces configurations were analyzed, in terms of both adhesion layers, type of metal supporting the plasma wave and super-layers, with the aim to optimize the stability and the sensitivity of both monomodal and multimodal SPR platforms. The best performances were obtained when a low damping metal-dielectric interface is created through the self-assembling of a monolayer of (3-Mercaptopropyl) trimethoxysilane (MPTS), and a single layer graphene (SLG) is transferred as a super-layer on the gold (Au) thin film.
The study of the process of stabilization of the SPR platforms was the base for the development of the second part of the dissertation, where we
demonstrate the potentialities of the SPR spectroscopy in the Kreschtmann configuration for the accurate ellipsometric characterization of a class of three different materials: gold nanoparticles (AuNPs), organic luminescent materials, and graphene. To obtain the simultaneous determination of both the thickness and refractive index of the thin films, a two-color and/or two-mode approach was adopted, the latter performed by the use of dielectric loaded waveguides (DLWG) with symmetric Au/MPTS/SiO2 interfaces.
Finally, the three class of materials have been used for the development of novel SPR optical sensors with environmental or biological interest. The proof of principle of an SPR based UVA dosimeter is demonstrated via the monitoring of the radiation induced modifications of the thickness and refractive index of luminescent thin film of tris(8-hydroxxyquinoline) (Alq3) and tris(dibenzoylmethnae) mono(1,10-phenanthroline) europium (III) (Eu(dbm)3Phen).
Sodium Citrate stabilized AuNPs with a nominal diameter of about 15 nm were used to show the principle work of a two-color SPR spectroscopy nanosizer and nanocounter. In the latter case, we demonstrate experimentally that DLWGs can be used as accurate nanocounters in the range of surface density between 20 and 200 NP/um2, with results important for both optical metrology and the emerging particle amplified PA-SPR spectroscopy.
Finally, we show the use of the Au/SLG interface for the ultrasensitive detection of heavy metal ions of environmental interest, with an unprecedented limit of detection (LoD) of the order of part per billion (ppb). The experimental results support the theoretical predictions about the affinity of particular sites of the infinite graphene to heavy metal ions, and the possibility to enhance the sensitivity of SPR devices by the plasmon assisted electron transfer between the metal film and the SLG.
|
Page generated in 0.0429 seconds