• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 319
  • 144
  • 14
  • 10
  • 8
  • 6
  • 5
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 568
  • 568
  • 275
  • 248
  • 240
  • 203
  • 191
  • 143
  • 141
  • 127
  • 122
  • 107
  • 107
  • 106
  • 98
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Voltage Stability Analysis with High Distributed Generation (DG) Penetration

Al-Abri, Rashid 03 August 2012 (has links)
Interest in Distributed Generation (DG) in power system networks has been growing rapidly. This increase can be explained by factors such as environmental concerns, the restructuring of electricity businesses, and the development of technologies for small-scale power generation. DG units are typically connected so as to work in parallel with the utility grid; however, with the increased penetration level of these units and the advancements in unit’s control techniques, there is a great possibility for these units to be operated in an autonomous mode known as a microgrid. Integrating DG units into distribution systems can have an impact on different practices such as voltage profile, power flow, power quality, stability, reliability, and protection. The impact of the DG units on stability problem can be further classified into three issues: voltage stability, angle stability, and frequency stability. As both angle and frequency stability are not often seen in distribution systems, voltage stability is considered to be the most significant in such systems. In fact, the distribution system in its typical design doesn’t suffer from any stability problems, given that all its active and reactive supplies are guaranteed through the substation. However, the following facts alter this situation: • With the development of economy, load demands in distribution networks are sharply increasing. Hence, the distribution networks are operating more close to the voltage instability boundaries. • The integration of distributed generation in distribution system introduces possibility of encountering some active/reactive power mismatches resulting in some stability concerns at the distribution level. Motivated by these facts, the target of this thesis is to investigate, analyze and enhance the voltage stability of distribution systems with high penetration of distributed generation. This study is important for the utilities because it can be applied with Connection Impact Assessment (CIA ). The study can be added as a complement assessment to study the impacts of the installation of DG units on voltage stability. In order to accomplish this target, this study is divided into three perspectives: 1) utilize the DG units to improve the voltage stability margin and propose a method to allocate DG units for this purpose, 2) investigate the impact of the DG units on proximity to voltage stability 3) conduct harmonic resonance analysis to visualize the impacts of both parallel and series resonance on the system’s stability. These perspectives will be tackled in Chapter 3, Chapter 4, and Chapter 5, respectively. Chapter 3 tackles placing and sizing of the DG units to improve the voltage stability margin and consider the probabilistic nature of both the renewable energy resources and the load. In fact, placement and sizing of DG units with an objective of improving the voltage stability margin while considering renewable DG generation and load probability might be a complicated problem, due to the complexity of running continuous load flow and at the same time considering the probabilistic nature of the load and the DG unit’s resources. Therefore, this thesis proposes a modified voltage index method to place and size the DG units to improve the voltage stability margin, with conditions of both not exceeding the buses’ voltage, and staying within the feeder current limits. The probability of the load and DG units are modeled and included in the formulation of the sizing and placing of the DG units. Chapter 4 presents a model and analysis to study the impact of the DG units on proximity to voltage instability. Most of the modern DG units are equipped with power electronic converters at their terminals. The power electronic converter plays a vital role to match the characteristics of the DG units with the requirements of the grid connections, such as frequency, voltage, control of active and reactive power, and harmonic minimization. Due to the power electronics interfacing, these DG units have negligible inertia. Thus, they make the system potentially prone to oscillations resulting from the network disturbances. The main goal of this chapter is to model and analyze the impact of distributed generation DG units on the proximity of voltage instability, with high penetration level of DG units. Chapter 5 studies the harmonic resonance due to the integration of DG units in distribution systems. Normally, the harmonic resonance phenomenon is classified as a power quality problem, however, this phenomenon can affect the stability of the system due to the parallel and series resonance. Thus, the main goal of this chapter is to study and analyze the impact of the integration of distributed generation on harmonic resonance by modeling different types of DG units and applying impedance frequency scan method.
102

Multi-agent based control and reconfiguration for restoration of distribution systems with distributed generators

Solanki, Jignesh M., January 2006 (has links)
Thesis (Ph.D.) -- Mississippi State University. Department of Electrical and Computer Engineering. / Title from title screen. Includes bibliographical references.
103

Ανάλυση και σχεδιασμός επιδεικτικού μικροδικτύου : μελέτη συμπεριφοράς ηλεκτρονικών μετατροπέων ισχύος

Κεμενέ, Ελένη 20 October 2010 (has links)
Η παρούσα διπλωματική εργασία πραγματεύεται την μελέτη των μικροδικτύων. Δίνεται ο ορισμός τους, αναλύονται τα δομικά τους μέρη καθώς και η λειτουργία τους. Στα πλαίσια της διπλωματικής αυτής πραγματοποιείται μελέτη εγκατάστασης ενός μικροδικτύου ενώ αναλύεται και εξετάζεται, με πειραματικές μετρήσεις, η λειτουργία ενός ήδη εγκατεστημένου μικροδικτύου στο Κέντρο Ανανεώσιμων Πηγών Ενέργειας. Η εργασία αυτή εκπονήθηκε στο Εργαστήριο Ηλεκτρομηχανικής Μετατροπής Ενέργειας του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών. Σκοπός είναι η δημιουργία ενός μικροδικτύου στο Εργαστήριο Ηλεκτρομηχανικής Μετατροπής Ενέργειας. Στην παρούσα εργασία έγινε η απαιτούμενη βιβλιογραφική αναζήτηση και η μελέτη του μικροδικτύου, που κατά κύριο λόγο εστιάστηκε στη μελέτη εγκατάστασης της φωτοβολταϊκής συστοιχίας. Επίσης παρουσιάζεται το μοντέλο προσομοίωσης για των φωτοβολταϊκών πλαισίων και εν γένει της φωτοβολταϊκής συστοιχίας. Αρχικά παρουσιάσαμε τα κύρια μέρη που αποτελούν ένα μικροδίκτυο. Εξετάσαμε τις μονάδες παραγωγής και αποθήκευσης καθώς και τις μονάδες που έχουν τον πιο σημαντικό ρόλο σε ένα μικροδίκτυο: τους ηλεκτρονικούς μετατροπείς ισχύος. Ακόμη μελετήθηκαν οι αρχές λειτουργίας των μικροδικτύων και η συμπεριφορά τους υπό διαφορετικές συνθήκες σύνδεσης. Στη συνέχεια μελετήθηκε ένα ήδη εγκατεστημένο μικροδίκτυο στο Κ.Α.Π.Ε ώστε να αποκτηθεί μια πιο ολοκληρωμένη εικόνα των λειτουργιών και των δυνατοτήτων των μικροδικτύων. Στο συγκεκριμένο μικροδίκτυο πραγματοποιήθηκαν μετρήσεις για την επιβεβαίωση της ορθής λειτουργίας και κατανόηση των παραμέτρων και λειτουργικών του χαρακτηριστικών Το επόμενο βήμα ήταν η ηλεκτρολογική μελέτη και η μελέτη εφαρμογής για το μικροδίκτυο που στοχεύουμε να εγκατασταθεί στο εργαστήριο. Η μελέτη περιορίστηκε στην εγκατάσταση της φωτοβολταϊκής γεννήτριας και των συσσωρευτών με τις αντίστοιχες μονάδες ηλεκτρικής μετατροπής ενέργειας. Τέλος η φωτοβολταϊκή συστοιχία προσομοιώθηκε στο περιβάλλον του Matlab/Simulink / This thesis deals with the study of Microgrids. We define them, analyzed their structure and function. In this thesis a study of a microgrid installation is carried out. An already established Microgid at the Centre for Renewable Energy is analyzed and a comparison with experimental results is made to confirm its operation. The work was conducted at the Laboratory of Electromechanical Energy Conversion, Department of Electrical and Computer Engineering School of Engineering, University of Patras. The aim is to create a Microgrid in Electromechanical Energy Conversion Laboratory. In this study the required literature search and study of Microgrids was completed, which primarily focused on the design of the installation of the photovoltaic array. It also shows the model simulation of photovoltaic modules and overall photovoltaic array. At the beginnibg we presente the main components that make up a microgrid. We examined the production and storage facilities as well as the units that have the most important role in a Microgrid: the electronic power inverters. Yet studied the operating principles of the Microgrid and their behavior under different link conditions. Then we studied a previously established microgrid in order to gain a more complete picture of the functions and capabilities of a Microgrid. In this microgrid measurements were performed to confirm the proper operation and understanding of the parameters and operating characteristics The next step was the electrical design and application study for a microgrid planned to be installed in the laboratory. The study was limited to the installation of the photovoltaic generator and batteries to their respective units of electrical energy conversion. Finally, the photovoltaic array was simulated in the environment of Matlab / Simulink
104

Τεχνικές ελέγχου μονάδων μικροδικτύου σε συστήματα ηλεκτρικής ενέργειας

Χρυσικού, Ελένη 04 October 2011 (has links)
Στην παρούσα εργασία γίνεται προσπάθεια για την περιγραφή των νέων μοντέλων δικτύου ηλεκτρικής ενέργειας που αναμένεται να δώσουν λύσεις στα διάφορα προβλήματα που έχουν κάνει την εμφάνιση τους λόγω της συνεχούς αύξησης στη ζήτηση ηλεκτρικής ενέργειας. Βασισμένα στην αξιοποίηση των Ανανεώσιμων Πηγών Ενέργειας, τα ΜικροΔίκτυα και κατ’ επέκταση τα Έξυπνα Δίκτυα θεωρούνται οι αντικαταστάτες του παραδοσιακού κεντρικά ελεγχόμενου ηλεκτρικού δικτύου, κάνοντας χρήση των πλεονεκτημάτων της Διεσπαρμένης Παραγωγής. Έπειτα από την αναφορά στο σημαντικό ρόλο των Ανανεώσιμων Πηγών Ενέργειας, περιγράφονται αναλυτικά οι έννοιες της Διεσπαρμένης Παραγωγής, του ΜικροΔικτύου και του Έξυπνου Δικτύου. Οι νέοι αυτοί όροι έχουν ήδη αρχίσει να εισέρχονται στην πραγματικότητα του ηλεκτρικού δικτύου, καθώς υπάρχουν ήδη χρονοδιαγράμματα που επιβάλουν την επιτακτική χρήση των Ανανεώσιμων Πηγών Ενέργειας από τα κράτη, σε μια προσπάθεια να μειωθούν οι εκπομπές των αερίων του θερμοκηπίου. Οι συνεχώς εξελισσόμενες τεχνολογίες που σχετίζονται με τα νέα πρότυπα του ηλεκτρικού δικτύου παρουσιάζονται επίσης. Είναι πολύ σημαντικό οι τεχνολογίες αυτές να αναπτυχθούν όσο το δυνατόν περισσότερο, ώστε να συμβάλλουν στην άμεση, αποδοτική και οικονομικά ωφέλιμη χρήση της Διεσπαρμένης Παραγωγής και την ομαλή και ασφαλή μετάβαση προς τα Έξυπνα Δίκτυα. Στη συνέχεια γίνεται περιγραφή κάποιων μεθόδων ελέγχου των ΜικροΔικτύων και των βασικών μονάδων που το απαρτίζουν. Παρουσιάζονται η λειτουργία του ΜικροΔικτύου όταν λειτουργεί σε απομόνωση από το υπόλοιπο βασικό δίκτυο και σε σύνδεση με αυτό, καθώς οι επιπτώσεις προγραμματισμένων και μη αποσυνδέσεων από τον βασικό κορμό του δικτύου. Τέλος, βασικό κομμάτι της εργασίας αυτής αποτελεί η προσομοίωση κάποιων βασικών μονάδων του ΜικροΔικτύου, και πιο συγκεκριμένα του Μικροστροβίλου και του Ολοκληρωμένου Συστήματος Κυψελών Καυσίμου Στερεού Οξειδίου. Τα αποτελέσματα των προσομοιώσεων αυτών παρουσιάζονται και αναλύονται για την αξιολόγηση της χρήσης τους και της σπουδαιότητάς τους σε συγκεκριμένες εφαρμογές. / In the present work we make an effort to describe the new models of electric networks that are expected to give solutions in the various problems that have made their appearance due to the continuous increase in the demand of electric energy. Based in the exploitation of Renewable Sources of Energy, MicroGrids, and as a result the SmartGrids are considered to be the substitutes of traditional central-controlled electric network, making use of the advantages of Distributed Generation. After the quick reference of the important role of Renewable Sources of Energy, the terms of Distributed Generation, MicroGrid and SmartGrid are described analytically . This new terms have already begun to enter the reality of the electric network, as timetables that impose the imperative use of Renewable Sources of Energy already exist,in an effort decrease the emissions of greenhouse gases.The continuously evolving technologies that are related with the new models of electric network are also presented. It is very important that these technologies are developed as much as possible, so that they contribute in a direct, efficient and economically beneficial use of Distributed Generation and the smooth and sure transition towards the SmartGrids. Afterwards we describe certain methods of control of MicroGrids and basic units that compose them. The operation of MicroGrid when it functions in isolation from the basic network and in connection with this is described.Finally, the simulations of certain basic units of Microgrids are described, focusing on Micorturbine and Solid Oxide Fuel Cell system. The results of these simulations are presented and analyzed for the evaluation of their use and their importance in certainapplications.
105

Μέθοδοι περιορισμού των ανυψώσεων τάσης σε δίκτυα διανομής με διεσπαρμένη παραγωγή

Ζαχαροπούλου, Δήμητρα 08 January 2013 (has links)
Σκοπός της παρούσης διπλωματικής εργασίας είναι η μελέτη μεθόδων περιορισμού των ανυψώσεων τάσης σε δίκτυα διανομής με διεσπαρμένη παραγωγή. Η μελέτη περιλαμβάνει αρχικά την ανάλυση και την εξήγηση του φαινομένου της ανύψωσης της τάσης σε δίκτυα διανομής στα οποία έχουν εγκατασταθεί τεχνολογίες διεσπαρμένης παραγωγής. Στη συνέχεια αναλύονται οι μέθοδοι αντιμετώπισης αυτού του φαινομένου. Συγκεκριμένα αναλύεται η μέθοδος περιορισμού της αύξησης της τάσης μέσω περιορισμού της ενεργού ισχύος των τεχνολογιών διεσπαρμένης παραγωγής ή μέσω απορρόφησης άεργου ισχύος ή ακόμη και μέσω συντονισμένου ελέγχου Μ/Σ μεταβλητής λήψης. Αναλύεται επίσης μέθοδος η οποία βασίζεται στη χρήση των Multiagent Systems. Επειδή όμως κεντρικές προσεγγίσεις απαιτούν σημαντικές επενδύσεις σε αισθητήρες, επικοινωνιακά και ελεγκτικά συστήματα , γεγονός που καθιστά την εφαρμογή τους σε μεγάλο αριθμό τεχνολογιών διεσπαρμένης παραγωγής δύσκολη, προτείνεται μία μέθοδος κατανεμημένου ελέγχου της τάσης. Προτείνονται ακόμη και πιο περίπλοκες μέθοδοι ελέγχου, όπως η ρύθμιση της τάσης που τίθεται ως στόχος από τους αυτόματους ελεγκτές τάσης ή ακόμη και συνδυασμός σταθερού συντελεστή ισχύος με αυτόματο έλεγχο της τάσης. Τέλος, αναλύεται μία μέθοδος ελέγχου της τάσης ενός αιολικού πάρκου μέσω δύο επιπέδων ελέγχου: ενός εποπτικού συστήματος ελέγχου όλου του πάρκου και ενός συστήματος ελέγχου κάθε ανεμογεννήτριας ξεχωριστά. Στη συνέχεια μελετήθηκε μία μέθοδος η οποία έχει ως στόχο της να μην ελέγχει την τάση του ζυγού της διεσπαρμένης παραγωγής αλλά να εξασφαλίζει ότι οι εγχύσεις ισχύος από μόνες τους δεν προκαλούν σημαντικές διαταραχές στην τάση. Αυτό γίνεται μέσω ελέγχου της άεργου ισχύος και περιλαμβάνει την εύρεση της τιμής της άεργου ισχύος που παράγει ή καταναλώνει η διεσπαρμένη γεννήτρια, τέτοιας ώστε η αύξηση της τάσης που προκαλείται από την ενεργό τιμή της γεννήτριας να ελαχιστοποιείται. Η παραπάνω μέθοδος εφαρμόζεται σε ένα ακτινικό δίκτυο ενός ζυγού για δύο περιπτώσεις, για την περίπτωση που στο ζυγό είναι συνδεδεμένο φορτίο και για την περίπτωση που δεν είναι φορτίο συνδεδεμένο. Στο ίδιο δίκτυο και για τις ίδιες περιπτώσεις εφαρμόζεται η μέθοδος σταθερού χωρητικού και επαγωγικού συντελεστή ισχύος και γίνεται σύγκριση των δύο μεθόδων. Η μέθοδος ελέγχου άεργου ισχύος εφαρμόζεται και σε ένα δίκτυο τεσσάρων ζυγών στους οποίους υπάρχουν συνδεδεμένα φορτία. / The purpose of this diploma thesis is to study approaches of voltage rise mitigation in distribution networks with distributed generation. The study at the beginning analyzes and explains the problem of voltage rise in distribution networks in which technologies of distributed generation are installed. Then approaches of mitigating this problem have been proposed. It is proposed an approach based on curtailing the active power generation. It is also suggested to mitigate voltage rise through absorption of reactive power or even through coordinated voltage control using on load tap changing transformers (OLTC). Another approach has been considered for voltage support through multi-agent-based optimization. However centralized approaches require significant investments in sensors, communication and control systems, which makes their application to massive distributed generation situations difficult to implement. Distributed voltage control approaches have also been proposed to limit the voltage rise in feeders where load and generation were considered continuously distributed. More complex distributed approaches have been proposed to control the target voltage of automatic voltage control relays at primary substations and to combine fixed power factor with automatic voltage control.Finally, a method of controlling the voltage of a wind park with two control levels is proposed: a supervisory control system throughout the park and a control system of each individual wind turbine. Then it is studied an approach that aims not to put distributed generation in control of bus voltage but to assure that injections alone do not cause significant voltage perturbations. This is achieved through a power control approach, which consists in finding the value of the generation’s reactive power such that the voltage rise caused by generation’s active power is minimized. The approach is applied to a two-bus radial network, for two load conditions: highly loaded and not loaded. In the same network is also applied a constant leading and lagging power factor approach which is compared with the previous one. The reactive power control approach is also applied to a four-bus highly loaded network.
106

Avaliação de Localizção e preço de contrato de geração distribuida em um ambiente competitivo

Lopez Lezama, Jesús María [UNESP] 16 February 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:50Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-02-16Bitstream added on 2014-06-13T19:19:29Z : No. of bitstreams: 1 lopezlezama_jm_dr_ilha.pdf: 1140558 bytes, checksum: 86f0f91a10800cda643c01c4a76fa063 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Nesta tese tem-se por objetivo a avaliação da alocação e preço de contrato de geração distribuida (GD) em ambientes competitivos. O trabalho apresentado é dividido em quatro temas principais. Na primeira parte deste trabalho é apresentado um modelo de e despacho de GD com base em um fluxo de potência ótimo AC multiperíodo. A principal vantagem deste modelo é a avaliação, de forma implícita, do impacto da GD na rede da concessionária. No modelo proposto considera-se um modelo de mercado no qual a a concessionária pode decidir comprar energia do mercado atacadista de energia através a e da subestação, ou alternativamente, das unidades de GD alocadas na sua rede, visando minimizar o pagamento no atendimento da demanda. Na segunda parte deste trabalho apresenta-se uma metodologia para calcular os preço de oferta de contrato da GD mediante programação binível. O modelo proposto considera a interação da concessionária e do proprietário da GD. De um lado, a concessionária procura minimizar o pagamento a a no atendimento da demanda. Para isto, utiliza-se um modelo de despacho simplificado similar ao apresentado na primeira parte deste trabalho. Por outro lado, o proprietário a da GD procura maximizar seus lucros mediante a venda de energia. Ambos os agentes devem cumprir, com certas restrições, por exemplo, a concessionária deve atender toda a demanda respeitando os limites técnicos da rede, enquanto o proprietário da GD deve e a fornecer sua energia considerando os limites mínimos e máximos das unidades de GD. Os a dois problemas de otimização são combinados em um problema de programação binível. A principal contribuição desta abordagem consiste na solução simultânea de dois problemas... / This work aims to the theoretical analysis and computational implementation of the operation and planning of distributed generation (DG) in a competitive framework. This report is divided in four main topics. In the first part of this work a DG dispatch model, based on a multi-period AC optimal power flow is presented. The main advantage of this model lies in the fact that it implicitly considers the impact of DG in the network of the distribution company. The proposed model considers a market model in which the distribution company can decide to purchase energy from the wholesale energy market, through the substation, or alternatively, from the DG units within its network, aiming to minimize the payments incurred in attending the demand. In the second part of this work a methodology to calculate the contract price offers of the DG by means of bilevel pro- gramming is presented. The proposed model considers the interaction of the utility and the owner of the DG. On one hand, the distribution company procures the minimization of the payments incurred in attending the demand. For this a simplified dispatch model, similar to the one presented in the first part of this work, is used. On the other hand, the DG owner procures the maximization of his profits by the selling of energy. Both agents must accomplish with certain constraints, for instance, the distribution company must attend all its demand considering the technical limits of the network, and the owner of the DG must supply his energy considering minimum and maximum limits of the gener- ation units. Both optimization problems are combined into a single bilevel optimization problem. The main contribution of this approach consists in the simultaneous solution of two optimization problems, providing contract prices that benefit both agents. In the third part of this work a Genetic... (Complete abstract click electronic access below)
107

Avaliação de Localizção e preço de contrato de geração distribuida em um ambiente competitivo /

Lopez Lezama, Jesús María. January 2011 (has links)
Resumo: Nesta tese tem-se por objetivo a avaliação da alocação e preço de contrato de geração distribuida (GD) em ambientes competitivos. O trabalho apresentado é dividido em quatro temas principais. Na primeira parte deste trabalho é apresentado um modelo de e despacho de GD com base em um fluxo de potência ótimo AC multiperíodo. A principal vantagem deste modelo é a avaliação, de forma implícita, do impacto da GD na rede da concessionária. No modelo proposto considera-se um modelo de mercado no qual a a concessionária pode decidir comprar energia do mercado atacadista de energia através a e da subestação, ou alternativamente, das unidades de GD alocadas na sua rede, visando minimizar o pagamento no atendimento da demanda. Na segunda parte deste trabalho apresenta-se uma metodologia para calcular os preço de oferta de contrato da GD mediante programação binível. O modelo proposto considera a interação da concessionária e do proprietário da GD. De um lado, a concessionária procura minimizar o pagamento a a no atendimento da demanda. Para isto, utiliza-se um modelo de despacho simplificado similar ao apresentado na primeira parte deste trabalho. Por outro lado, o proprietário a da GD procura maximizar seus lucros mediante a venda de energia. Ambos os agentes devem cumprir, com certas restrições, por exemplo, a concessionária deve atender toda a demanda respeitando os limites técnicos da rede, enquanto o proprietário da GD deve e a fornecer sua energia considerando os limites mínimos e máximos das unidades de GD. Os a dois problemas de otimização são combinados em um problema de programação binível. A principal contribuição desta abordagem consiste na solução simultânea de dois problemas... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: This work aims to the theoretical analysis and computational implementation of the operation and planning of distributed generation (DG) in a competitive framework. This report is divided in four main topics. In the first part of this work a DG dispatch model, based on a multi-period AC optimal power flow is presented. The main advantage of this model lies in the fact that it implicitly considers the impact of DG in the network of the distribution company. The proposed model considers a market model in which the distribution company can decide to purchase energy from the wholesale energy market, through the substation, or alternatively, from the DG units within its network, aiming to minimize the payments incurred in attending the demand. In the second part of this work a methodology to calculate the contract price offers of the DG by means of bilevel pro- gramming is presented. The proposed model considers the interaction of the utility and the owner of the DG. On one hand, the distribution company procures the minimization of the payments incurred in attending the demand. For this a simplified dispatch model, similar to the one presented in the first part of this work, is used. On the other hand, the DG owner procures the maximization of his profits by the selling of energy. Both agents must accomplish with certain constraints, for instance, the distribution company must attend all its demand considering the technical limits of the network, and the owner of the DG must supply his energy considering minimum and maximum limits of the gener- ation units. Both optimization problems are combined into a single bilevel optimization problem. The main contribution of this approach consists in the simultaneous solution of two optimization problems, providing contract prices that benefit both agents. In the third part of this work a Genetic... (Complete abstract click electronic access below) / Orientador: Antonio Padilha Feltrin / Coorientador: Javier Contreras Sanz / Banca: Jose Roberto Sanches Mantovani / Banca: Carlos Roberto Minussi / Banca: Walmir de Freitas Filho / Banca: Flávio Antonio Becon Lemos / Doutor
108

Deregulated Real-Time Pricing for the Promotion of Distributed Renewables

January 2011 (has links)
abstract: This thesis pursues a method to deregulate the electric distribution system and provide support to distributed renewable generation. A locational marginal price is used to determine prices across a distribution network in real-time. The real-time pricing may provide benefits such as a reduced electricity bill, decreased peak demand, and lower emissions. This distribution locational marginal price (D-LMP) determines the cost of electricity at each node in the electrical network. The D-LMP is comprised of the cost of energy, cost of losses, and a renewable energy premium. The renewable premium is an adjustable function to compensate `green' distributed generation. A D-LMP is derived and formulated from the PJM model, as well as several alternative formulations. The logistics and infrastructure an implementation is briefly discussed. This study also takes advantage of the D-LMP real-time pricing to implement distributed storage technology. A storage schedule optimization is developed using linear programming. Day-ahead LMPs and historical load data are used to determine a predictive optimization. A test bed is created to represent a practical electric distribution system. Historical load, solar, and LMP data are used in the test bed to create a realistic environment. A power flow and tabulation of the D-LMPs was conducted for twelve test cases. The test cases included various penetrations of solar photovoltaics (PV), system networking, and the inclusion of storage technology. Tables of the D-LMPs and network voltages are presented in this work. The final costs are summed and the basic economics are examined. The use of a D-LMP can lower costs across a system when advanced technologies are used. Storage improves system costs, decreases losses, improves system load factor, and bolsters voltage. Solar energy provides many of these same attributes at lower penetrations, but high penetrations have a detrimental effect on the system. System networking also increases these positive effects. The D-LMP has a positive impact on residential customer cost, while greatly increasing the costs for the industrial sector. The D-LMP appears to have many positive impacts on the distribution system but proper cost allocation needs further development. / Dissertation/Thesis / M.S. Electrical Engineering 2011
109

Automated distribution network planning with active network management

Conner, Steven January 2017 (has links)
Renewable energy generation is becoming a major part of energy supply, often in the form of distributed generation (DG) connected to distribution networks. While growth has been rapid, there is awareness that limitations on spare capacity within distribution (and transmission) networks is holding back development. Developments are being shelved until new network reinforcements can be built, which may make some projects non-viable. Reinforcements are costly and often underutilised, typically only loaded to their limits for a few occasions during the year. In order to accommodate new DG without the high costs or delays, active network management (ANM) is being promoted in which generation and other network assets are controlled within the limits of the existing network. There is a great deal of complexity and uncertainty associated with developing ANM and devising coherent plans to accommodate new DG is challenging for Distribution Network Operators (DNOs). As such, there is a need for robust network planning tools that can explicitly handle ANM and which can be trusted and implemented easily. This thesis describes the need for and the development of a new distribution expansion planning framework that provides DNOs with a better understanding of the impacts created by renewable DG and the value of ANM. This revolves around a heuristic planning framework which schedules necessary upgrades in power lines and transformers associated with changes in demand as well as those driven by the connection of DG. Within this framework a form of decentralised, adaptive control of DG output has been introduced to allow estimation of the impact of managing voltage and power flow constraints on the timing and need for network upgrades. The framework is initially deployed using simple scenarios but a further advance is the explicit use of time series to provide substantially improved estimates of the levels of curtailment implied by ANM. In addition, a simplified approach to incorporating demand side management has been deployed to facilitate understanding of the scope and role this may play in facilitating DG connections.
110

Alocação ótima de geração distribuída considerando perdas e desvios de tensão como aspectos econômicos

Angarita, Oscar Fernando Becerra January 2015 (has links)
Este trabalho apresenta um modelo para alocação e dimensionamento ótimo da geração distribuída em sistemas elétricos de potência. Com o objetivo de minimizar o custo da concessionária devido as perdas ativas e desvios de tensão em regime permanente, ambos foram transformados em valores monetários utilizando a normativa existente no Brasil. O problema de otimização considera uma curva de carga de 24 níveis com o intuito de simular uma curva de carga diária em intervalos de uma hora. Foram considerados limites de tensão de cada barra e corrente máxima em cada trecho do alimentador. O fluxo de potência foi estimado através do algoritmo clássico de Newton Raphson. A alocação da geração distribuída, a qual é considerada em mais de um local do alimentador, é tratada como uma variável binária no modelo desenvolvido. O modelo de otimização não-linear inteira mista é escrita mediante um algoritmo em Matlab na linguagem GAMS e enviado para o servidor de otimização NEOS e solucionado pelo solver KNITRO. O resultado é a obtenção do valor dos custos evitados para a concessionária facilitando o diagnóstico para a tomada de decisões. Por fim para verificação do método, realiza-se um estudo de caso em um sistema de distribuição de 33 barras da IEEE, sendo os resultados analisados e discutidos. / This work presents a model for optimal distributed generation sizing and allocation in power systems. The main objectives are to reduce costs for the power distribution company by power losses and compensation for voltage levels violation, both are converted in monetary values based on the Brazilian normative. The optimization problem considers a load curve with 24 levels to simulate one day in intervals of one hour. Also the model considers voltage limits for each bus and maximum currents for every line in the feeder. The power flow was formulated by the classical Newton Raphson theory. The distribution generation allocation is modeled as binary variables and can be allocated in more than one bus in the feeder. The mixed integer nonlinear model is written by a Matlab algorithm in GAMS language and solved by KNITRO through NEOS solver for optimization. The model was tested using the IEEE 33 buses, and the results were evaluated and discussed. The model lets power distribution companies reduce operational cost and penalties with optimal placement and sizing of distributed generation.

Page generated in 0.0503 seconds