• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 479
  • 112
  • 57
  • 52
  • 28
  • 22
  • 14
  • 10
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 1037
  • 153
  • 123
  • 121
  • 83
  • 81
  • 74
  • 66
  • 64
  • 63
  • 62
  • 61
  • 61
  • 56
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Forest Structural Complexity and Net Primary Production Resilience Across a Gradient of Disturbance in a Great Lakes Ecosystem

Haber, Lisa T. 01 January 2018 (has links)
Forests are an important component of the global carbon (C) cycle and contribute to climate change mitigation through atmospheric C uptake and storage in biomass and soils. However, the forest C sink is susceptible to disturbance, which modifies physical and biological structure and limits spatial extent of forests. Unlike severe, stand-replacing disturbances that reset forest successional trajectories and may simplify ecosystem structure, moderate severity disturbances may instead introduce complexity in ways that sustain net primary production (NPP), leading to the phenomenon of “NPP resilience.” In this study, we examined the linkage between disturbance severity and ecosystem biological and physical structural change, and implications for NPP within an experimentally disturbed forest in northern Michigan, USA. We computed spatially resolved and spatially agnostic metrics of forest biological and physical structure before and 10 years after disturbance across a continuum of severity. We found that while biological structure did not change in response to disturbance, three of four physical structural measures increased or were unimodally related to disturbance severity. Physical structural shifts mediated by disturbance were not found to directly influence processes coupled with NPP. However, decadal changes in the spatial aggregation index of Clark and Evans, though not a function of disturbance severity, were found to predict canopy light uptake, leaf physiological variability, and relative NPP within plots. We conclude that ecosystem structural shifts across disturbance severity continua are variable and differ in their relationship to NPP resilience.
122

Predicting the effect of climate change on the biodiversity of sessile invertebrates on a coral reef

Simon Walker Unknown Date (has links)
In the marine environment, relatively little is known about how the effects of climatic change will manifest into future patterns of biodiversity and community stability, with the exception of recent work on corals in tropical reef ecosystems. In this thesis, I examine quantitatively how patterns of coral reef biodiversity will respond to the impacts of climatic change and provide essential information (i) to address a critical knowledge gap in the understanding of coral reef biodiversity and (ii) predict how a wide range of sessile invertebrates from coral reef ecosystems will respond to a range of potential impacts of climatic change such as increased physical disturbance and rising sea level. An initial descriptive component of my thesis was required to determine the distribution and abundance of a diverse assemblages of sessile non-scleractinian invertebrates, found along gradients of increasing physical disturbance from wave action and increasing intertidal shore height. I also examined the source, intensity and frequency of disturbance along these environmental gradients. This information was used to derive testable hypotheses about the potential impacts of increasing physical disturbance and rising sea level associated with climatic change. I found that physical disturbance had a substantial influence on the types of species that are able to survive in these intertidal rubble habitats, with diversity decreasing at more exposed shores and further down the shore. Physical disturbance was more important for determining the composition of sessile assemblages than other biotic factors such as predation, which only had weak effects on these sessile assemblages. Increased frequency and intensity of waves and storms will increase rates of physical disturbances such as scraping and overturning of rubble plates, which will have a substantial negative impact on biodiversity in these tropical intertidal habitats. These effects may be more complicated that first thought when combined with the effects of rising sea level which will not only alter the extent of inundation, but may also allow wave energy to propagate further up the shore, which has the potential to modify interactions among species through changes to the supply and recruitment of larvae, predator-prey interactions, competition and survival in harsher environments. However, the magnitude of these impacts may depend on how increased physical disturbance and rising sea level affect established species, and whether they will have a substantial effect on larval mortality rates, which currently appears to be limited by physical disturbance. Declines in biodiversity as a result of climatic change over the next 100 years could have important implications for the future health and productivity of coral reef ecosystems, especially given the ecosystem services these organisms provide. A greater understanding of the processes that drive the distribution and abundance of many different types of organisms on coral reefs, and indeed in other ecosystems, will provide essential information that managers can use to better understand and maintain these important ecosystems for future generations.
123

Reducing the Use of Seclusion and Restraint in Segregated Special Education School Settings Through Implementation of the Collaborative Problem Solving Model

Glew, BethAnn 20 January 2012 (has links)
The intent of this study was to determine whether implementation of the Collaborative Problem Solving (CPS) model, that has proven successful in psychiatric settings, was equally effective in reducing restrictive practices in public school settings. Many peer-reviewed, published reports suggest that educators are poorly prepared to manage the extremely challenging behaviors of aggression and non-compliance, which are common in students classified with an emotional disturbance (ED). Too often educators rely on ineffective, potentially harmful interventions such as seclusion and restraint, which adversely impact students as well as staff. The nonrandom sample was comprised of students enrolled in two segregated special education schools located in large communities in northwestern Pennsylvania. The enrollment was 69 students in School A and 26 students in School B. The schools serve students, kindergarten through twelfth grade. All students were evaluated and classified as ED by their referring home school district as per Chapter 14 Regulations of the Pennsylvania Department of Education and received one-hundred percent of their special education program in this restrictive school-based environment. This study used a quasi-experimental, pre-test-post-test research design and used two separate existing electronic data sources to test for relationships between the implementation of the CPS model and identified variables (standardized measures of externalizing maladaptive behaviors, incidents of aggression, noncompliance, and disruption, as well as incidents and duration of seclusion and restraint). The analyses included frequency comparisons, a series of Wilcoxon Signed Rank Tests, a series of dependent samples T-tests, and two-way repeated measures analyses of variance. Implementation of the model reduced the incidents of aggression, noncompliance, and disruption, as well as incidents and duration of seclusion and restraint. However, only one of the schools in the study demonstrated a statistically significant reduction of aggression incidents and the use of restraint procedures. The results suggest that when implemented with fidelity, the research-based CPS model is a promising, preventative behavior approach for students classified with ED in a segregated special education school. / School of Education / Interdisciplinary Doctoral Program for Education Leaders (IDPEL) / EdD / Dissertation
124

Contribution to the design of control laws for bilateral teleoperation with a view to applications in minimally invasive surgery.

Delwiche, Thomas 09 December 2009 (has links)
Teleoperation systems have been used in the operating rooms for more than a decade. However, the lack of force feedback in commercially available systems still raises safety issues and forbids surgical gestures like palpation. Although force feedback has already been implemented in experimental setups, a systematic methodology is still lacking to design the control laws. The approach developed in this thesis is a contribution towards such a systematic methodology: it combines the use of disturbance observers with the use of a structured fixed-order controller. This approach is validated by experiments performed on a one degree of freedom teleoperation system. A physical model of this system is proposed and validated experimentally. Disturbance observers allow to compensate friction, which is responsible for performance degradation in teleoperation. Contrary to alternative approaches,they are based on a model of the frictionless mechanical system. This allows to compensate friction with a time varying behavior, which occurs in laparoscopy. Parametric uncertainties in this model may lead to an unstable closed-loop. A kind of "separation principle" is provided to decouple the design of the closed-loop system from the design of the observer. It relies on a modified problem statement and on the use of available robust design and analysis tools. A new metric is proposed to evaluate the performance of friction compensation systems experimentally. This metric evaluates the ability of a compensation system to linearize a motion system, irrespective of the task and as a function of frequency. The observer-based friction compensation is evaluated with respect to this new metric and to a task-based metric. It correctly attenuates the friction in the bandwidth of interest and significantly improves position and force tracking during a palpation task. Structured fixed-order controllers are optimized numerically to achieve robust closed-loop performance despite modeling uncertainty. The structure is chosen among classical teleoperation structures. An efficient algorithm is selected and implemented to design such a controller, which is evaluated for a palpation task. It is compared to a full-order unstructured controller, representative of the design approach that has been used in the teleoperation literature up to now. The comparison highlights the advantages of our new approach: order-reduction steps and counter-intuitive behaviors are avoided. A structured fixed-order controller combined with a disturbance observer is implemented during a needle insertion experiment and allowed to obtain excellent performance.
125

Energy Flow and Food Web Ecology along a Hydroperiod Gradient

Schriever, Tiffany 07 January 2013 (has links)
Identifying the ecological mechanisms that determine food web structure is critical for understanding the causes and consequences of diversity. The objective of this thesis was to identify the mechanisms structuring aquatic food webs across environmental gradients from a multi-level perspective (individual to ecosystem) using integrative methodology and field experiments to test classic ecological theory. My results demonstrate support for the dynamic constraints hypothesis, which predicts habitats with greater disturbance should have shorter food chains, but are not consistent with the ecosystem size hypothesis that predicts larger ecosystems have longer food chains. Insect and amphibian richness increased with increasing pond size and hydroperiod, indicating that insertion of new consumers into pond communities was driving variation in food-chain length. A multivariate analysis testing the influence of physicochemical variables on food-web characteristics revealed that hydroperiod and pond area had a strong influence on amphibian and invertebrate assemblages, trophic diversity and 15N range. Food-chain length did not respond strongly to any one variable, but instead responded weakly to multiple environmental variables, suggesting interacting influences on food-web structure. Conversely, the trophic niche of amphibian larvae was not influenced by pond hydroperiod, but did exhibit ontogenetic diet shifts. Populations of amphibian larvae with broader niche widths also had increased individual variation, supporting the niche variation hypothesis. In addition, I assessed whether species diversity influenced the magnitude of cross-habitat resource flow between aquatic and terrestrial habitats via emerging aquatic insects, metamorphosing amphibians, and litter deposition. Deposition into ponds far exceeded carbon exported via insect and amphibian emergences. We found a negative relationship between resource flux and the diversity of amphibians and insects, which contradicts the general pattern of positive biodiversity-ecosystem function relationships. My research strongly suggests environmental variation is a key process in shaping food-web structure and function and that multiple methodologies are needed to understand temporal and spatial dynamics of aquatic ecosystems.
126

Application of repetitive control to the lateral motion in a roll-to-roll web system

Jin, Zhao 04 April 2012 (has links)
In a roll-to-roll web system lateral motion of a web caused by disturbances, which are often periodic, results in poor product quality. To reduce the effect of such disturbances, two control strategies are applied. First, the internal model principle is used to reject a sinusoidal disturbance. Second, repetitive control theory is used to reject a general periodic disturbance. We provide the synthesis procedure for both strategies, and demonstrate its use in several simulation studies on a five-roller web system. The simulation results show that the effect of disturbances, either sinusoidal or triangular, on lateral motion are significantly reduced with the internal model controller or the modified repetitive controller.
127

掃流砂礫による付着藻類の剥離効果算定に基づいた河床攪乱作用の評価について

田代, 喬, TASHIRO, Takashi, 渡邉, 慎多郎, WATANABE, Shintaro, 辻本, 哲郎, TSUJIMOTO, Tetsuro 02 1900 (has links)
No description available.
128

低攪乱礫床における付着藻類剥離効果の評価とそれに基づく繁茂動態モデルの構築

田代, 喬, TASHIRO, Takashi, 辻本, 哲郎, TSUJIMOTO, Tetsuro 02 1900 (has links)
No description available.
129

Ecosystem oxygen metabolism in an impacted temperate river network: Application of the δ18O-DO approach

Chen, Gao January 2013 (has links)
Ecosystem metabolism is an important indicator of aquatic ecosystem function. This thesis concerns ecosystem metabolism as recorded by daily variation in dissolved oxygen (DO) and δ18O-DO in an impacted temperate river network, the Grand River, Ontario, Canada, and specifically addresses the effects of stream size and human disturbance including agriculture, deforestation, and wastewater treatment plants (WWTPs). A suite of 14 sites in the Grand River network was selected with stream sizes varying from 2nd to 7th order. A transient model of river ecosystem oxygen metabolism, ROM-TM, was developed in order to calculate river ecosystem metabolic rates and reaeration rates from field observation of changes in DO and δ18O-DO. ROM-TM is an inverse modeling approach programmed using MATLAB. Key parameters describing the main metabolic processes, gas exchange, and isotopic fractionation, such as maximum photosynthetic rate (Pm), photosynthetic efficiency (a), respiration rate at 20℃ (R20), gas exchange coefficient (k), respiration isotopic fractionation factor (aR), and photorespiration coefficient (βR), can be obtained by matching of model predictions with field data. Besides being capable of teasing apart metabolic processes and gas exchange to provide daily average estimates of metabolic parameters at the ecosystem level, ROM-TM can be used to address issues related to light including light saturation phenomena at the ecosystem level, the effect of cloud cover on metabolic balance and photorespiration. Primary production responses to light along a longitudinal gradient in the Grand River network were described by means of P-I curves. Both light-limited and light-saturated conditions were observed. Production parameters Pm and Ik in the Grand River network exhibited an increase with stream order, while a was independent of stream size. However, a did vary among and within sites. Higher light availability in small and middle-sized streams without riparian trees was associated with high Pm, Ik and Ec, but low a. Ecosystem-level Pm in both small periphyton-dominated streams and large macrophyte-dominated rivers in the Grand River basin were generally less than community-level Pm values from the literature. However, two Grand River sites had comparable Pm to literature-derived Pm due to the prolific growth of macrophytes supported by high nutrient effluents from upstream WWTPs. Ecosystem-level a in my study streams were also less than those at the community level, indicating there was a declining trend of this parameter with scale, from individual, community to ecosystem. Derived parameters (e.g., Ik, Ec, and saturation point) increased from the individual level to the community level, and then to the ecosystem level. From May to early October, metabolic rates in the Grand River network (gross primary production, GPP = 0.4 to 20 and ecosystem respiration, ER = 2 to 33 g O2 m-2 day-1) were within the broad range of metabolic rates occurring in the temperate region, regardless of stream size. The Grand River network is a net heterotrophic system. The total GPP and ER for whole basin was 3.3e+08 and 4.2e+08 g O2 day-1, respectively. Reach geomorphology controls the spatial patterns of stream metabolism in the Grand River network, although the spatial patterns may be modified by effects of human disturbance on riparian vegetation, nutrients and other factors. Stream order and channel width, as measures of stream size, are good predictors of metabolic rates and ratios of GPP: ER from small streams to the central Grand River. Ecosystem metabolic rates and ratios generally increase with stream size, but with site-specific variation. The Grand River network is experiencing effects of human disturbance, mostly downstream of the urban areas and least in small streams with remaining riparian forest. The small and middle-sized streams (2nd to 4th order) without riparian trees in agriculture regions in the Grand River basin did not exhibit significantly different GPP and ER than their counterparts with riparian trees. The stimulative effect of increased light availability due to open canopy on GPP in non-shaded streams may be offset by shading from stream banks and riparian grasses, and unstable sediments resulting from agricultural activities. Large river sites impacted by WWTPs had significantly increased metabolic rates, both GPP and ER, compared to two upstream sites impacted by agriculture only. This result suggests that urban areas cause impacts on the Grand River that are superimposed on the impacts of agriculture. Three aspects of metabolism of the Grand River differ from the general pattern for the temperate regions: (1) a increase trend of GPP: ER ratios with stream size from 2nd to 7th order; (2) overall, human activities in the Grand River watershed have stronger positive effects on the GPP than on the ER; (3) the middle-sized to large river sites (5th-7th order) had greater influence than small to middle-sized streams (2nd-5th order) in the Grand River on overall GPP and ER. The general trend of GPP: ER ratio in tropical, subtropical, temperate, and global data approximately conforms to the predictions of the River Continuum Concept (RCC). However, the maximum ratio of GPP: ER in mid-reaches of river networks is not usually >1 as proposed in the RCC. There is a latitude and stream size shift phenomenon regarding where the peak ratio of GPP: ER occurs in each climate zone. The maximum GPP: ER ratio is higher at higher latitudes and occurs at higher order streams. The study of stream ecosystem metabolism can benefit from the addition of the second oxygen budget, δ18O-DO, in four ways: (1) it is better to use both DO and δ18O-DO budgets, rather than DO only, in sampling protocols with low temporal frequency but high spatial frequency; (2) the δ18O-DO time series data can provide relatively independent constraints on parameter estimation; (3) the addition of δ18O-DO in using two oxygen budgets to quantify metabolic rates provides a way, the cross-plot of δ18O-DO against fraction of DO saturation, to indicate trophic status of an aquatic ecosystem; and (4) the addition of δ18O-DO can provide an estimate of aR at the ecosystem level that can be used to understand factors affecting respiration.
130

Utvärdering av skötseln i artrika vägkanter i Trafikverkets - Region Mitt

Sjölund, Magnus January 2013 (has links)
Roadsides in Sweden offer suitable habitats for species that naturally occur in the old agricultural landscape, a habitat that is less common today. These species are favored by small-scale disturbance such as of mowing which is to some extent applied in roadsides for management of the road surface. The Swedish Transport Administration has worked according to the environmental directives for sustainable populations of threatened species that occur along roadsides. Roadsides with threatened species and species that represent the old agriculture landscape have been located and described. Such roadsides have been named species rich roadsides (artrik vägkant) and can be found in different environments spread across the country. The Swedish Transport Administration has developed recommendations for special management to support species of old agricultural landscape in roadsides. Previous studies have shown a negative development of the species rich roadsides, with reduced numbers of species rich roadsides.  This project has analyzed whether there is a relationship between the management of species rich roadsides and the negative development of species rich roadsides, and also make recommendations for improving management methods needed for improving the development of species rich roadsides. Data have been used from previous inventories of species rich roadsides, the study area restricted to Region Mitt.  The present management of species rich roadsides has a significant negative effect of the development of species rich roadsides. To improve the development of species rich roadsides, management must be adapted to the environment the roadside is located to.

Page generated in 0.0466 seconds