• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigações em processamento de imagens mamográficas para auxílio ao diagnóstico de mamas densas / Investigations on processing of mammografic images to aid diagnosis of dense breasts

Marques, Fátima de Lourdes dos Santos Nunes 13 July 2001 (has links)
Esquemas de diagnóstico auxiliado por computador (CAD, do inglês \"computer aided diagnosis\") têm sido desenvolvidos com o objetivo de fornecer subsídios para a detecção precoce do câncer de mama. Nesses esquemas, técnicas de processamento de imagens são utilizadas para indicar a existência de estruturas suspeitas em imagens mamográficas. Entre essas estruturas estão os agrupamentos de microcalcificações (clusters), cuja existência é indicativo da necessidade de uma inspeção mais minuciosa no local. As imagens de mamas densas, características principalmente de mulheres jovens, constituem, no entanto, um desafio para esses esquemas devido ao baixo contraste entre as estruturas de interesse e os demais tecidos representados na imagem mamográfica. Nesta pesquisa, portanto, foram feitas investigações sobre as características das imagens radiográficas de mamas densas, a partir das quais foram desenvolvidas técnicas de realce de contraste que, somadas a outras técnicas de processamento digital, proporcionaram um desempenho mais apropriado de um esquema de processamento para detecção de c1usters. Foram ainda elaboradas técnicas que permitam o trabalho com uma resolução de contraste mais adequada, além de outras que consideram alguns dos parâmetros físicos envolvidos na obtenção das imagens e procedimentos para reduzir diagnósticos falsos-positivos. Os resultados registrados nos testes com diferentes conjuntos de imagens de uma base de dados montada para esse projeto indicam que a combinação das técnicas desenvolvidas permite incrementar o desempenho de um esquema de processamento para detectar agrupamentos de microcalcificações, possibilitando a identificação de estruturas em imagens de baixo contraste, não detectadas em processamento convencional antes do realce de contrate. Como efeito, essa investigação mostra a possibilidade de esquemas CAD em mamografia atingir agora desempenho satisfatório na detecção de microcalcificações em imagens de mamas densas. / Computer-aided diagnosis (CAD) schemes have been developed intended to provide information for early detection of breast cancer. Image processing techniques are used in these schemes in order to indicate suspicious structures in mammographic images. Among these structures there are clustered microcalcifications, which usually drive to a more detailed examination in the location where they are. Images corresponding to dense breasts, which are characteristic mainly of young women, are however a challenge to CAD schemes due to the low contrast between the structures of c1inical interest and the other tissues registered on the film. Therefore, investigations were performed in this work on the characteristics of dense breasts radiographic images, from which contrast enhancement techniques were developed. These procedures were joined to other digital processing techniques to provide a better performance for a processing scheme intended to clusters detection. In addition, techniques which allow to work with a more suitable contrast resolution and others which take into account some of the physical parameters involved in the image acquisition process were developed together with a procedure designed to reduce false positive diagnoses. The results obtained during tests with different images sets from a data base developed for this research indicate that combining all the techniques developed here allow to improve the performance of a processing scheme designed to detect microcalcifications clusters, and it also allows to distinguish some of these structures in low contrast images, which were not detected in conventional processing before the contrast enhancement. As consequence, this investigation shows the possibility now for CAD schemes in mammography reaches a better performance in microcalcifications detection in dense breasts images.
2

Investigações em processamento de imagens mamográficas para auxílio ao diagnóstico de mamas densas / Investigations on processing of mammografic images to aid diagnosis of dense breasts

Fátima de Lourdes dos Santos Nunes Marques 13 July 2001 (has links)
Esquemas de diagnóstico auxiliado por computador (CAD, do inglês \"computer aided diagnosis\") têm sido desenvolvidos com o objetivo de fornecer subsídios para a detecção precoce do câncer de mama. Nesses esquemas, técnicas de processamento de imagens são utilizadas para indicar a existência de estruturas suspeitas em imagens mamográficas. Entre essas estruturas estão os agrupamentos de microcalcificações (clusters), cuja existência é indicativo da necessidade de uma inspeção mais minuciosa no local. As imagens de mamas densas, características principalmente de mulheres jovens, constituem, no entanto, um desafio para esses esquemas devido ao baixo contraste entre as estruturas de interesse e os demais tecidos representados na imagem mamográfica. Nesta pesquisa, portanto, foram feitas investigações sobre as características das imagens radiográficas de mamas densas, a partir das quais foram desenvolvidas técnicas de realce de contraste que, somadas a outras técnicas de processamento digital, proporcionaram um desempenho mais apropriado de um esquema de processamento para detecção de c1usters. Foram ainda elaboradas técnicas que permitam o trabalho com uma resolução de contraste mais adequada, além de outras que consideram alguns dos parâmetros físicos envolvidos na obtenção das imagens e procedimentos para reduzir diagnósticos falsos-positivos. Os resultados registrados nos testes com diferentes conjuntos de imagens de uma base de dados montada para esse projeto indicam que a combinação das técnicas desenvolvidas permite incrementar o desempenho de um esquema de processamento para detectar agrupamentos de microcalcificações, possibilitando a identificação de estruturas em imagens de baixo contraste, não detectadas em processamento convencional antes do realce de contrate. Como efeito, essa investigação mostra a possibilidade de esquemas CAD em mamografia atingir agora desempenho satisfatório na detecção de microcalcificações em imagens de mamas densas. / Computer-aided diagnosis (CAD) schemes have been developed intended to provide information for early detection of breast cancer. Image processing techniques are used in these schemes in order to indicate suspicious structures in mammographic images. Among these structures there are clustered microcalcifications, which usually drive to a more detailed examination in the location where they are. Images corresponding to dense breasts, which are characteristic mainly of young women, are however a challenge to CAD schemes due to the low contrast between the structures of c1inical interest and the other tissues registered on the film. Therefore, investigations were performed in this work on the characteristics of dense breasts radiographic images, from which contrast enhancement techniques were developed. These procedures were joined to other digital processing techniques to provide a better performance for a processing scheme intended to clusters detection. In addition, techniques which allow to work with a more suitable contrast resolution and others which take into account some of the physical parameters involved in the image acquisition process were developed together with a procedure designed to reduce false positive diagnoses. The results obtained during tests with different images sets from a data base developed for this research indicate that combining all the techniques developed here allow to improve the performance of a processing scheme designed to detect microcalcifications clusters, and it also allows to distinguish some of these structures in low contrast images, which were not detected in conventional processing before the contrast enhancement. As consequence, this investigation shows the possibility now for CAD schemes in mammography reaches a better performance in microcalcifications detection in dense breasts images.
3

[en] CONTINUOUS SPEECH RECOGNITION BY COMBINING MFCC AND PNCC ATTRIBUTES WITH SS, WD, MAP AND FRN METHODS OF ROBUSTNESS / [pt] RECONHECIMENTO DE VOZ CONTINUA COMBINANDO OS ATRIBUTOS MFCC E PNCC COM METODOS DE ROBUSTEZ SS, WD, MAP E FRN

CHRISTIAN DAYAN ARCOS GORDILLO 09 June 2014 (has links)
[pt] O crescente interesse por imitar o modelo que rege o processo cotidiano de comunicação humana através de maquinas tem se convertido em uma das áreas do conhecimento mais pesquisadas e de grande importância nas ultimas décadas. Esta área da tecnologia, conhecida como reconhecimento de voz, em como principal desafio desenvolver sistemas robustos que diminuam o ruído aditivo dos ambientes de onde o sinal de voz é adquirido, antes de que se esse sinal alimente os reconhecedores de voz. Por esta razão, este trabalho apresenta quatro formas diferentes de melhorar o desempenho do reconhecimento de voz contınua na presença de ruído aditivo, a saber: Wavelet Denoising e Subtração Espectral, para realce de fala e Mapeamento de Histogramas e Filtro com Redes Neurais, para compensação de atributos. Esses métodos são aplicados isoladamente e simultaneamente, afim de minimizar os desajustes causados pela inserção de ruído no sinal de voz. Alem dos métodos de robustez propostos, e devido ao fato de que os e conhecedores de voz dependem basicamente dos atributos de voz utilizados, examinam-se dois algoritmos de extração de atributos, MFCC e PNCC, através dos quais se representa o sinal de voz como uma sequência de vetores que contêm informação espectral de curtos períodos de tempo. Os métodos considerados são avaliados através de experimentos usando os software HTK e Matlab, e as bases de dados TIMIT (de vozes) e NOISEX-92 (de ruído). Finalmente, para obter os resultados experimentais, realizam-se dois tipos de testes. No primeiro caso, é avaliado um sistema de referência baseado unicamente em atributos MFCC e PNCC, mostrando como o sinal é fortemente degradado quando as razões sinal-ruıdo são menores. No segundo caso, o sistema de referência é combinado com os métodos de robustez aqui propostos, analisando-se comparativamente os resultados dos métodos quando agem isolada e simultaneamente. Constata-se que a mistura simultânea dos métodos nem sempre é mais atraente. Porem, em geral o melhor resultado é obtido combinando-se MAP com atributos PNCC. / [en] The increasing interest in imitating the model that controls the daily process of human communication trough machines has become one of the most researched areas of knowledge and of great importance in recent decades. This technological area known as voice recognition has as a main challenge to develop robust systems that reduce the noisy additive environment where the signal voice was acquired. For this reason, this work presents four different ways to improve the performance of continuous speech recognition in presence of additive noise, known as Wavelet Denoising and Spectral Subtraction for enhancement of voice, and Mapping of Histograms and Filter with Neural Networks to compensate for attributes. These methods are applied separately and simultaneously two by two, in order to minimize the imbalances caused by the inclusion of noise in voice signal. In addition to the proposed methods of robustness and due to the fact that voice recognizers depend mainly on the attributes voice used, two algorithms are examined for extracting attributes, MFCC, and PNCC, through which represents the voice signal as a sequence of vectors that contain spectral information for short periods of time. The considered methods are evaluated by experiments using the HTK and Matlab software, and databases of TIMIT (voice) and Noisex-92 (noise). Finally, for the experimental results, two types of tests were carried out. In the first case a reference system was assessed based on MFCC and PNCC attributes, only showing how the signal degrades strongly when signal-noise ratios are higher. In the second case, the reference system is combined with robustness methods proposed here, comparatively analyzing the results of the methods when they act alone and simultaneously. It is noted that simultaneous mix of methods is not always more attractive. However, in general, the best result is achieved by the combination of MAP with PNCC attributes.

Page generated in 0.0246 seconds