Spelling suggestions: "subject:"[een] HISTOGRAM MAPPING"" "subject:"[enn] HISTOGRAM MAPPING""
1 |
Sound synthesis with cellular automataSerquera, Jaime January 2012 (has links)
This thesis reports on new music technology research which investigates the use of cellular automata (CA) for the digital synthesis of dynamic sounds. The research addresses the problem of the sound design limitations of synthesis techniques based on CA. These limitations fundamentally stem from the unpredictable and autonomous nature of these computational models. Therefore, the aim of this thesis is to develop a sound synthesis technique based on CA capable of allowing a sound design process. A critical analysis of previous research in this area will be presented in order to justify that this problem has not been previously solved. Also, it will be discussed why this problem is worthwhile to solve. In order to achieve such aim, a novel approach is proposed which considers the output of CA as digital signals and uses DSP procedures to analyse them. This approach opens a large variety of possibilities for better understanding the self-organization process of CA with a view to identifying not only mapping possibilities for making the synthesis of sounds possible, but also control possibilities which enable a sound design process. As a result of this approach, this thesis presents a technique called Histogram Mapping Synthesis (HMS), which is based on the statistical analysis of CA evolutions by histogram measurements. HMS will be studied with four different automatons, and a considerable number of control mechanisms will be presented. These will show that HMS enables a reasonable sound design process. With these control mechanisms it is possible to design and produce in a predictable and controllable manner a variety of timbres. Some of these timbres are imitations of sounds produced by acoustic means and others are novel. All the sounds obtained present dynamic features and many of them, including some of those that are novel, retain important characteristics of sounds produced by acoustic means.
|
2 |
[en] CONTINUOUS SPEECH RECOGNITION BY COMBINING MFCC AND PNCC ATTRIBUTES WITH SS, WD, MAP AND FRN METHODS OF ROBUSTNESS / [pt] RECONHECIMENTO DE VOZ CONTINUA COMBINANDO OS ATRIBUTOS MFCC E PNCC COM METODOS DE ROBUSTEZ SS, WD, MAP E FRNCHRISTIAN DAYAN ARCOS GORDILLO 09 June 2014 (has links)
[pt] O crescente interesse por imitar o modelo que rege o processo cotidiano de comunicação humana através de maquinas tem se convertido em uma das áreas do conhecimento mais pesquisadas e de grande importância nas ultimas décadas. Esta área da tecnologia, conhecida como reconhecimento de voz, em como principal desafio desenvolver sistemas robustos que diminuam o ruído aditivo dos ambientes de onde o sinal de voz é adquirido, antes de que se esse sinal alimente os reconhecedores de voz. Por esta razão, este trabalho apresenta quatro formas diferentes de melhorar o desempenho do reconhecimento de voz contınua na presença de ruído aditivo, a saber: Wavelet Denoising e Subtração Espectral, para realce de fala e Mapeamento de Histogramas e Filtro com Redes Neurais, para compensação de atributos. Esses métodos são aplicados isoladamente e simultaneamente, afim de minimizar os desajustes causados pela inserção de ruído no sinal de voz. Alem dos métodos de robustez propostos, e devido ao fato de que os e conhecedores de voz dependem basicamente dos atributos de voz utilizados, examinam-se dois algoritmos de extração de atributos, MFCC e PNCC, através dos quais se representa o sinal de voz como uma sequência de vetores que contêm informação espectral de curtos períodos de tempo. Os métodos considerados são avaliados através de experimentos usando os software HTK e Matlab, e as bases de dados TIMIT (de vozes) e NOISEX-92 (de ruído). Finalmente, para obter os resultados experimentais, realizam-se dois tipos de testes. No primeiro caso, é avaliado um sistema de referência baseado unicamente em atributos MFCC e PNCC, mostrando como o sinal é fortemente degradado quando as razões sinal-ruıdo são menores. No segundo caso, o sistema de referência é combinado com os métodos de robustez aqui propostos, analisando-se comparativamente os resultados dos métodos quando agem isolada e simultaneamente. Constata-se que a mistura simultânea dos métodos nem sempre é mais atraente. Porem, em geral o melhor resultado é obtido combinando-se MAP com atributos PNCC. / [en] The increasing interest in imitating the model that controls the daily
process of human communication trough machines has become one of the
most researched areas of knowledge and of great importance in recent decades.
This technological area known as voice recognition has as a main challenge
to develop robust systems that reduce the noisy additive environment where
the signal voice was acquired. For this reason, this work presents four different
ways to improve the performance of continuous speech recognition in presence
of additive noise, known as Wavelet Denoising and Spectral Subtraction for
enhancement of voice, and Mapping of Histograms and Filter with Neural
Networks to compensate for attributes. These methods are applied separately
and simultaneously two by two, in order to minimize the imbalances caused
by the inclusion of noise in voice signal. In addition to the proposed methods
of robustness and due to the fact that voice recognizers depend mainly on the
attributes voice used, two algorithms are examined for extracting attributes,
MFCC, and PNCC, through which represents the voice signal as a sequence
of vectors that contain spectral information for short periods of time. The
considered methods are evaluated by experiments using the HTK and Matlab
software, and databases of TIMIT (voice) and Noisex-92 (noise). Finally, for
the experimental results, two types of tests were carried out. In the first case
a reference system was assessed based on MFCC and PNCC attributes, only
showing how the signal degrades strongly when signal-noise ratios are higher.
In the second case, the reference system is combined with robustness methods
proposed here, comparatively analyzing the results of the methods when they
act alone and simultaneously. It is noted that simultaneous mix of methods is
not always more attractive. However, in general, the best result is achieved by
the combination of MAP with PNCC attributes.
|
Page generated in 0.0328 seconds