• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 13
  • 10
  • 5
  • 5
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 100
  • 100
  • 30
  • 29
  • 20
  • 20
  • 19
  • 19
  • 16
  • 15
  • 15
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bounds on quantities of physical interest

Wakefield, M. A. January 2003 (has links)
No description available.
2

Accuracy driven adaptive nonlinear analysis of planar framed structures

Chew, Alvin January 2001 (has links)
No description available.
3

On Numerical Error Estimation for the Finite-Volume Method with an Application to Computational Fluid Dynamics

Tyson, William Conrad 29 November 2018 (has links)
Computational fluid dynamics (CFD) simulations can provide tremendous insight into complex physical processes and are often faster and more cost-effective to execute than experiments. However, each CFD result inherently contains numerical errors that can significantly degrade the accuracy of a simulation. Discretization error is typically the largest contributor to the overall numerical error in a given simulation. Discretization error can be very difficult to estimate since the generation, transport, and diffusion of these errors is a highly nonlinear function of the computational grid and discretization scheme. As CFD is increasingly used in engineering design and analysis, it is imperative that CFD practitioners be able to accurately quantify discretization errors to minimize risk and improve the performance of engineering systems. In this work, improvements are made to the accuracy and efficiency of existing error estimation techniques. Discretization error is estimated by deriving and solving an error transport equation (ETE) for the local discretization error everywhere in the computational domain. Truncation error is shown to act as the local source for discretization error in numerical solutions. An equivalence between adjoint methods and ETE methods for functional error estimation is presented. This adjoint/ETE equivalence is exploited to efficiently obtain error estimates for multiple output functionals and to extend the higher-order properties of adjoint methods to ETE methods. Higher-order discretization error estimates are obtained when truncation error estimates are sufficiently accurate. Truncation error estimates are demonstrated to deteriorate on grids with a non-smooth variation in grid metrics (e.g., unstructured grids) regardless of how smooth the underlying exact solution may be. The loss of accuracy is shown to stem from noise in the discrete solution on the order of discretization error. When using conventional least-squares reconstruction techniques, this noise is exactly captured and introduces a lower-order error into the truncation error estimate. A novel reconstruction method based on polyharmonic smoothing splines is developed to smoothly reconstruct the discrete solution and improve the accuracy of error estimates. Furthermore, a method for iteratively improving discretization error estimates is devised. Efficiency and robustness considerations are discussed. Results are presented for several inviscid and viscous flow problems. To facilitate the study of discretization error estimation, a new, higher-order finite-volume solver is developed. A detailed description of the code base is provided along with a discussion of best practices for CFD code design. / Ph. D. / Computational fluid dynamics (CFD) is a branch of computational physics at the intersection of fluid mechanics and scientific computing in which the governing equations of fluid motion, such as the Euler and Navier-Stokes equations, are solved numerically on a computer. CFD is utilized in numerous fields including biomedical engineering, meteorology, oceanography, and aerospace engineering. CFD simulations can provide tremendous insight into physical processes and are often preferred over experiments because they can be performed more quickly, are typically more cost-effective, and can provide data in regions where it may be difficult to measure. While CFD can be an extremely powerful tool, CFD simulations are inherently subject to numerical errors. These errors, which are generated when the governing equations of fluid motion are solved on a computer, can have a significant impact on the accuracy of a CFD solution. If numerical errors are not accurately quantified, ill-informed decision-making can lead to poor system performance, increased risk of injury, or even system failure. In this work, research efforts are focused on numerical error estimation for the finite -volume method, arguably the most widely used numerical algorithm for solving CFD problems. The error estimation techniques provided herein target discretization error, the largest contributor to the overall numerical error in a given simulation. Discretization error can be very difficult to estimate since these errors are generated, convected, and diffused by the same physical processes embedded in the governing equations. In this work, improvements are made to the accuracy and efficiency of existing discretization error estimation techniques. Results are presented for several inviscid and viscous flow problems. To facilitate the study of these error estimators, a new, higher-order finite -volume solver is developed. A detailed description of the code base is provided along with a discussion of best practices for CFD code design.
4

On goal-oriented error estimation and adaptivity for nonlinear systems with uncertain data and application to flow problems

Bryant, Corey Michael 09 February 2015 (has links)
The objective of this work is to develop a posteriori error estimates and adaptive strategies for the numerical solution to nonlinear systems of partial differential equations with uncertain data. Areas of application cover problems in fluid mechanics including a Bayesian model selection study of turbulence comparing different uncertainty models. Accounting for uncertainties in model parameters may significantly increase the computational time when simulating complex problems. The premise is that using error estimates and adaptively refining the solution process can reduce the cost of such simulations while preserving their accuracy within some tolerance. New insights for goal-oriented error estimation for deterministic nonlinear problems are first presented. Linearization of the adjoint problems and quantities of interest introduces higher-order terms in the error representation that are generally neglected. Their effects on goal-oriented adaptive strategies are investigated in detail here. Contributions on that subject include extensions of well-known theoretical results for linear problems to the nonlinear setting, computational studies in support of these results, and an extensive comparative study of goal-oriented adaptive schemes that do, and do not, include the higher-order terms. Approaches for goal-oriented error estimation for PDEs with uncertain coefficients have already been presented, but lack the capability of distinguishing between the different sources of error. A novel approach is proposed here, that decomposes the error estimate into contributions from the physical discretization and the uncertainty approximation. Theoretical bounds are proven and numerical examples are presented to verify that the approach identifies the predominant source of the error in a surrogate model. Adaptive strategies, that use this error decomposition and refine the approximation space accordingly, are designed and tested. All methodologies are demonstrated on benchmark flow problems: Stokes lid-driven cavity, 1D Burger’s equation, 2D incompressible flows at low Reynolds numbers. The procedure is also applied to an uncertainty quantification study of RANS turbulence models in channel flows. Adaptive surrogate models are constructed to make parameter uncertainty propagation more efficient. Using surrogate models and adaptivity in a Bayesian model selection procedure, it is shown that significant computational savings can be gained over the full RANS model while maintaining similar accuracy in the predictions. / text
5

Evaluating Query Estimation Errors Using Bootstrap Sampling

Cal, Semih 29 July 2021 (has links)
No description available.
6

Computing Bounds for Linear Functionals of Exact Weak Solutions to Poisson’s Equation

Sauer-Budge, A.M., Huerta, A., Bonet, J., Peraire, Jaime 01 1900 (has links)
We present a method for Poisson’s equation that computes guaranteed upper and lower bounds for the values of linear functional outputs of the exact weak solution of the infinite dimensional continuum problem using traditional finite element approximations. The guarantee holds uniformly for any level of refinement, not just in the asymptotic limit of refinement. Given a finite element solution and its output adjoint solution, the method can be used to provide a certificate of precision for the output with an asymptotic complexity which is linear in the number of elements in the finite element discretization. / Singapore-MIT Alliance (SMA)
7

Finite Element Output Bounds for a Stabilized Discretization of Incompressible Stokes Flow

Peraire, Jaime, Budge, Alexander M. 01 1900 (has links)
We introduce a new method for computing a posteriori bounds on engineering outputs from finite element discretizations of the incompressible Stokes equations. The method results from recasting the output problem as a minimization statement without resorting to an error formulation. The minimization statement engenders a duality relationship which we solve approximately by Lagrangian relaxation. We demonstrate the method for a stabilized equal-order approximation of Stokes flow, a problem to which previous output bounding methods do not apply. The conceptual framework for the method is quite general and shows promise for application to stabilized nonlinear problems, such as Burger's equation and the incompressible Navier-Stokes equations, as well as potential for compressible flow problems. / Singapore-MIT Alliance (SMA)
8

Reduced-Basis Output Bound Methods for Parametrized Partial Differential Equations

Prud'homme, C., Rovas, D.V., Veroy, K., Machiels, L., Maday, Y., Patera, Anthony T., Turinici, G. 01 1900 (has links)
We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic (and parabolic) partial differential equations with affine parameter dependence. The essential components are (i) (provably) rapidly convergent global reduced-basis approximations -- Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N selected points in parameter space; (ii) a posteriori error estimation -- relaxations of the error-residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs of interest; and (iii) off-line/on-line computational procedures -- methods which decouple the generation and projection stages of the approximation process. The operation count for the on-line stage -- in which, given a new parameter value, we calculate the output of interest and associated error bound -- depends only on N (typically very small) and the parametric complexity of the problem; the method is thus ideally suited for the repeated and rapid evaluations required in the context of parameter estimation, design, optimization, and real-time control. / Singapore-MIT Alliance (SMA)
9

Error estimation and stabilization for low order finite elements

Liao, Qifeng January 2010 (has links)
No description available.
10

Discretization Error Estimation Using the Error Transport Equations for Computational Fluid Dynamics Simulations

Wang, Hongyu 11 June 2021 (has links)
Computational Fluid Dynamics (CFD) has been widely used as a tool to analyze physical phenomena involving fluids. To perform a CFD simulation, the governing equations are discretized to formulate a set of nonlinear algebraic equations. Typical spatial discretization schemes include finite-difference methods, finite-volume methods, and finite-element methods. Error introduced in the discretization process is called discretization error and defined as the difference between the exact solution to the discrete equations and the exact solution to the partial differential or integral equations. For most CFD simulations, discretization error accounts for the largest portion of the numerical error in the simulation. Discretization error has a complicated nonlinear relationship with the computational grid and the discretization scheme, which makes it especially difficult to estimate. Thus, it is important to study the discretization error to characterize numerical errors in a CFD simulation. Discretization error estimation is performed using the Error Transport Equations (ETE) in this work. The original nonlinear form of the ETE can be linearized to formulate the linearized ETE. Results of the two types of the ETE are compared. This work implements the ETE for finite-volume methods and Discontinuous Galerkin (DG) finite-element methods. For finite volume methods, discretization error estimates are obtained for both steady state problems and unsteady problems. The work on steady-state problems focuses on turbulent flow modelled by the Spalart-Allmaras (SA) model and Menter's $k-omega$ SST model. Higher-order discretization error estimates are obtained for both the mean variables and the turbulence working variables. The type of pseudo temporal discretization used for the steady-state problems does not have too much influence on the final converged solution. However, the temporal discretization scheme makes a significant difference for unsteady problems. Different temporal discretizations also impact the ETE implementation. This work discusses the implementation of the ETE for the 2-step Backward Difference Formula (BDF2) and the Singly Diagonally Implicit Runge-Kutta (SDIRK) methods. Most existing work on the ETE focuses on finite-volume methods. This work also extends ETE to work with the DG methods and tests the implementation with steady state inviscid test cases. The discretization error estimates for smooth test cases achieve the expected order of accuracy. When the test case is non-smooth, the truncation error estimation scheme fails to generate an accurate truncation error estimate. This causes a reduction of the discretization error estimate to first-order accuracy. Discussions are made on how accurate truncation error estimates can be found for non-smooth test cases. / Doctor of Philosophy / For a general practical fluid flow problem, the governing equations can not be solved analytically. Computational Fluid Dynamics (CFD) approximates the governing equations by a set of algebraic equations that can be solved directly by the computer. Compared to experiments, CFD has certain advantages. The cost for running a CFD simulation is typically much lower than performing an experiment. Changing the conditions and geometry is usually easier for a CFD simulation than for an experiment. A CFD simulation can obtain information of the entire flow field for all field variables, which is nearly impossible for a single experiment setup. However, numerical errors are inherently persistent in CFD simulations due to the approximations made in CFD and finite precision arithmetic of the computer. Without proper characterization of errors, the accuracy of the CFD simulation can not be guaranteed. Numerical errors can even result in false flow features in the CFD solution. Thus, numerical errors need to be carefully studied so that the CFD simulation can provide useful information for the chosen application. The focus of this work is on numerical error estimation for the finite-volume method and the Discontinuous Galerkin (DG) finite-element method. In general, discretization error makes the most significant contribution to the numerical error of a CFD simulation. This work estimates discretization error by solving a set of auxiliary equations derived for the discretization error of a CFD solution. Accurate discretization error estimates are obtained for different test cases. The work on the finite-volume method focus on discretization error estimation for steady state turbulent test cases and unsteady test cases. To the best of the author's knowledge, the implementation of the current discretization error estimation scheme has only been applied as an intermediate step for the error estimation of functionals for the DG method in the literature. Results for steady-state inviscid test cases for the DG method are presented.

Page generated in 0.0725 seconds