• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 38
  • 22
  • 22
  • 20
  • 8
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 251
  • 52
  • 34
  • 30
  • 27
  • 26
  • 26
  • 21
  • 20
  • 19
  • 19
  • 17
  • 16
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The influence of rock mass and intact rock properties on the design of surface mines with particular reference to the excavatability of rock /

Kramadibrata, Suseno. January 1996 (has links)
Thesis (Ph.D.)--Curtin University of Technology. / Includes bibliographical references. Also available as an electronic version via the Internet.
42

An analysis for braced excavations in clay /

Xia, Huanliang, January 1999 (has links)
Thesis (Ph.D.)--Memorial University of Newfoundland, 1999. / Bibliography: leaves 360-373.
43

The Highsmith Site (Je4) an early, middle, and late Woodland site in the upper Rock River drainage.

Salzer, Robert James. January 1965 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1965. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 190-193).
44

Great Zimbabwe : eine ethnologische Untersuchung /

Böhmer-Bauer, Kunigunde. January 2000 (has links)
Diss.--Philosophische Fakultät--München--Kudwig-Maximilians-Universität, 1999. / Bibliogr. p. 472-499.
45

Proposal of Flowable Fill Designs for improvement of excavation and filling works of trenches in sanitation systems

Cruz, J., Cruz, J., Ñiquin, J., Bragagnini, I., Sotomayor, C. 28 February 2020 (has links)
Population grow in recent years requires an extension of the current pipeline sanitary system. For this purpose, granular excavation and landfill works are associated with pedestrian traffic congestion. Therefore, it is necessary to develop an innovative and sustainable alternative to reduce the problems generated during the execution of the conventional process. This research proposes the use of flowable fill due to the multiple advantages offered by this material. On the one hand, it is economical for medium to large trench fill volumes, considering savings in labor (it is done with a small number of workers), in equipment (does not require the rental or purchase of compaction equipment) and in time (the pouring is done by directly pumping the mixture, from the mixing machines to the excavation). On the other hand, being self-compacting and self-leveling decreases the width of the trenches, reducing excavation and filling volumes; which, in turn, incur money savings. Also, this material guarantees work safety, since people are not required inside the excavation and fill in poorly accessible areas without any problem. Dosages were established for ten flowable fill mixtures with cement contents of 50, 60, 70, 80 and 90 kg of cement and a range of admixture from 1.75 to 2.00%; The results indicated that decreasing the fine aggregate - coarse aggregate ratio, the compressive strength of the mixtures increases and the slumps of the mixtures decreases, and the compressive strength increases directly proportional to the cement content.
46

Beam models for the hangingwall of deep, tabular excavations in stratified rock

De Villiers, N A January 1989 (has links)
In the South African gold mining industry, mining is being conducted at depths of over 3 000 m below the surface. Severe fracturing and deformation of the rock occurs making it unlikely that stress analysis which treats the rock as a homogeneous elastic material will yield useful results about the behaviour around the excavation. The excavation, or stope, considered in this study is tabular. The stope occurs in stratified rock with bedding planes at approximately 1 m intervals. The height of the stope is about 1 m to 1.5 m and the length increases to over 100 m as mining progresses. Shear fractures initiate ahead of the advancing stope, which together with the bedding planes separate the rock into distinct blocks of relatively intact material. The stratified nature of the material in the hangingwall (or roof) of the excavation, and the lack of cohesion in the bedding planes, suggests that separation occurs along the bedding planes, with each layer supporting its own weight. The lowest of these layers is referred to as the "hangingwall beam". Stope closure occurs at a distance of around 30 to 40 m behind the stope face. This study focuses on the mechanics of the hangingwall beam with particular emphasis on the conditions for stable closure. In order to do this the stope is first analysed using a finite element model which treats the rock as a homogeneous elastic medium. By treating the hangingwall beam as a separate layer, 1 m thick, its behaviour is compared to that observed in practice. We find that the hangingwall beam does separate from the overlying rock, but that the axial stresses in the beam are tensile, thus contradicting the observed behaviour. In practice, compressive stresses exist in the hangingwall and footwall. It has been suggested that slip along the shear fractures generates the compressive stresses. In constructing a mathematical model of the hangingwall beam we consider the beam to be made up of blocks 1 m deep and 1 m long. The blocks are treated as a homogeneous elastic material. The behaviour of such a beam is different from that of a fully homogeneous beam, because of the possibility of the formation of hinges. By considering a range of simplified models of a beam composed of blocks, various questions regarding its stability can be addressed. These models consider beams of fixed span in which the weight is increased from zero to the full value. The largest unsupported halfspan which can be stably equilibrated is of the order of 31 m. The maximum stable deflection is 0. 4 m, and therefore additional support is required to allow closure to occur statically. The nature of a single supporting spring that will let down the beam in a limiting, stable manner is identified. Once closure has taken place, the hangingwall beam is stable. In order to obtain a realistic picture of the steady state configuration of the hangingwall beam, an analysis is performed which simulates the advancing stope face. The results show that the distance between the face and the point of closure is around 34 m which is in accord with the behaviour observed in practice. The results have shown that the model which treats the hangingwall as a beam composed of blocks provides useful information about the mechanics of the hangingwall.
47

Fördelning av använda efterbehandlingsmetoder i praktiken– en kartläggning av efterbehandlingar utförda de senaste 12 åren / Distribution of used soil remediation methods inpractice- a survey of soil remediation carried out in the last 12 years.

Nilsson, Levi January 2021 (has links)
If soil becomes so polluted that it can be assumed to pose unacceptable risks to health, theenvironment or natural resources, remedial action must be carried out. In 2006, aninventory study was compiled by the Swedish Environmental Protection Agency. The resultsshowed that more than 50% of the projects were completed via excavation of thecontaminated masses. Now 15 years later, the purpose of this report is to study remedialactions completed in Sweden over a 12-year period (2010–2021) and try to investigate howthe distribution of the methods used in practice reflects the development of knowledge onremediation. All 290 municipalities in Sweden were contacted and over 1000 reports ofremedial action were collected. Out of all 1000 reports only 114 was used due to the smallsize and short time allocated for this study. The result showed that in 113 of the 114 cases theremedial action was shown to be excavation, and, thus my conclusion is that excavation stillaccounted for the majority of remedial action methods used. It is not possible, based on theresults in this report, to determine exactly which factor or to what extent each factorcontributes to the majority of ex-situ remediation in Sweden. Probable reasons are the highcommercial availability of excavation remediation and traditions that exist in the industry,which means that it will not be possible for in-situ methods to establish themselves andbecome financially sustainable.
48

Back-analysis methods for optimal tunnel design

Vardakos, Sotirios 07 March 2007 (has links)
A fundamental element of the observational method in geotechnical engineering practice is the utilization of a carefully laid out performance monitoring system which provides rapid insight of critical behavioral trends of the work. Especially in tunnels, this is of paramount importance when the contractual arrangements allow an adaptive tunnel support design during construction such as the NATM approach. Utilization of measurements can reveal important aspects of the ground-support interaction, warning of potential problems, and design optimization and forecasting of future behavior of the underground work. The term back-analysis involves all the necessary procedures so that a predicted simulation yields results as close as possible to the observed behavior. This research aims in a better understanding of the back-analysis methodologies by examining both simplified approaches of tunnel response prediction but also more complex numerical methods. Today a wealth of monitoring techniques is available for tunnel monitoring. Progress has also been recorded in the area of back-analysis in geotechnical engineering by various researchers. One of the most frequently encountered questions in this reverse engineering type of work is the uniqueness of the final solution. When possible errors are incorporated during data acquisition, the back analysis problem becomes formidable. Up to the present, various researchers have presented back-analysis schemes, often coupled with numerical methods such as the Finite Element Method, and in some cases the more general approach of neural networks has been applied. The present research focuses on the application of back-analysis techniques that are applicable to various conditions and are directly coupled with a widely available numerical program. Different methods are discussed and examples are given. The strength and importance of global optimization is introduced for geotechnical engineering applications along with the novel implementation of two global optimization algorithms in geotechnical parameter identification. The techniques developed are applied to the back-analysis of a modern NATM highway tunnel in China and the results are discussed. / Ph. D.
49

Using wave attenuation techniques for monitoring of stress levels

Lin, Po-Ming 17 November 2012 (has links)
Stress can have a significant effect on the stability of pillars. To get an accurate picture of pillar stability, information is needed not only on the initial stress magnitude and distribution but also on all subsequent stress changes. Sonic methods have the potential to be among the fastest, most economical and least destructive means of stress measurement. Wave propagation velocity has long been applied to the investigation of the upper mantle and crust stress. Recently, it has also been applied to rock burst prediction and mine site investigations. Another parameter for investigating stress in rocks is the attenuation coefficient. Attenuation has been observed to be more sensitive to stress changes than wave velocity; however, the measurement of attenuation is more difficult than that of wave velocity. In this study, the mechanism of sonic attenuation in rock is reviewed. Both the velocity and the attenuation of sound waves in five different rock types under various stress levels were examined in the laboratory. It was found that the relationship between the velocity ratio and stress and that between the attenuation ratio and stress, for a specific rock type, can be expressed by simplified second order polynomial equations. / Master of Science
50

Computer aided blast fragmentation prediction

Exadaktylos, George E. 08 July 2010 (has links)
The complex and non-linear nature of blast fracturing have restricted common blast design mostly to empirical approaches. The code developed for this investigation avoids both empiricism and large memory requirement in order to simulate the pattern of interacting radial fractures from an array of shotholes, at various burdens and spacings, and in simultaneous and delayed modes. The resultant pattern is analyzed and a fragment size distribution calculated. The rules governing the distribution of radial cracks and the way in which they interact are based on model scale experiments conducted by various investigators. Calculated fragment size- distribution agree with data from the field. Powder factor dependence of fragmentation results is also well described by the model. The effect of discontinuities on rock fragmentation by blasting is also incorporated into the model. Discontinuities which are open and filled with air or soil-like material affect destructively the transmission of strain waves and propagation of cracks in the rock mass. These discontinuities can be incorporated into the simulation by inserting cracks to represent them. The cracks representing discontinuities will then terminate the cracks produced by blasting where they intersect. On the other hand, tight joints without filling material or with filling material but with a high bond strength and acoustic impedance close to that of the medium do not affect in a negative way the transmission of shock waves in the rock mass. A mathematical model was developed to treat these discontinuities which was based on principles from Linear Elastic Fracture Mechanics theory and Kuznetsov's equation which relates the mean fragment size obtained to the blast energy, hole size and rock characteristics. / Master of Science

Page generated in 0.0434 seconds