• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the geometrically nonlinear constant moment triangle (with a note on drilling rotations)

Providas, Efthimios January 1990 (has links)
No description available.
2

Simulation of the deformation of a stope support design / Abraham Johannes Laubscher

Laubscher, Abraham Johannes January 2014 (has links)
Supported stope mining is one of the most common types of mining in the modern day gold mining industry. The excavated regions, where ore is extracted, are supported with a combination of roof-bolting, timber packs, backfill, timber props and mechanical prop technologies. In order to install a support system that will be able to absorb the energy released by the elastic movement of the surrounding rock mass and support the unstable hanging wall, it is necessary for the rock engineer to know how the individual types of support will react to different load conditions in order to design a safe support system. Current support systems are developed using knowledge from past experience and trial and error processes. These are expensive and time consuming methods that can possibly be improved and made more cost effective by using modern design techniques. A study was conducted to determine the feasibility of the application of Finite Element Modelling (FEM) to the deformation of a modern support unit under specified quasi-static and dynamic stope load conditions with the view to assist in the prediction of the operational performance of support units that cannot be experimentally tested due to a lack of test equipment, capabilities and facilities. The study was extended by investigating the theoretical possibility of buckling due to an impact load on the prop and the performance of the prop. To achieve this, a simulation was carried out using ANSYS™ transient structural software to determine whether it is possible to simulate the performance curve of a prop. Computerised methods were used to determine the possibility of failure due to buckling and the implications of buckling, if it occurs, on the performance of a specific support prop design. In summary this study proved that it is possible to simulate the performance curve of a friction prop design in order to compare the result obtained with the required performance, provided that the correct friction coefficients between prop mating surfaces are known. It also presents a methodology to investigate the theoretical effect of high velocity impact load on the buckling potential of a friction prop design and slender columns in general, which is highly applicable to these types of support. The methodologies used in this study can be applied to different designs of friction props, and possibly reduce the development costs and implementation time of these types of support units. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
3

Simulation of the deformation of a stope support design / Abraham Johannes Laubscher

Laubscher, Abraham Johannes January 2014 (has links)
Supported stope mining is one of the most common types of mining in the modern day gold mining industry. The excavated regions, where ore is extracted, are supported with a combination of roof-bolting, timber packs, backfill, timber props and mechanical prop technologies. In order to install a support system that will be able to absorb the energy released by the elastic movement of the surrounding rock mass and support the unstable hanging wall, it is necessary for the rock engineer to know how the individual types of support will react to different load conditions in order to design a safe support system. Current support systems are developed using knowledge from past experience and trial and error processes. These are expensive and time consuming methods that can possibly be improved and made more cost effective by using modern design techniques. A study was conducted to determine the feasibility of the application of Finite Element Modelling (FEM) to the deformation of a modern support unit under specified quasi-static and dynamic stope load conditions with the view to assist in the prediction of the operational performance of support units that cannot be experimentally tested due to a lack of test equipment, capabilities and facilities. The study was extended by investigating the theoretical possibility of buckling due to an impact load on the prop and the performance of the prop. To achieve this, a simulation was carried out using ANSYS™ transient structural software to determine whether it is possible to simulate the performance curve of a prop. Computerised methods were used to determine the possibility of failure due to buckling and the implications of buckling, if it occurs, on the performance of a specific support prop design. In summary this study proved that it is possible to simulate the performance curve of a friction prop design in order to compare the result obtained with the required performance, provided that the correct friction coefficients between prop mating surfaces are known. It also presents a methodology to investigate the theoretical effect of high velocity impact load on the buckling potential of a friction prop design and slender columns in general, which is highly applicable to these types of support. The methodologies used in this study can be applied to different designs of friction props, and possibly reduce the development costs and implementation time of these types of support units. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
4

Estudo comparativo de diferentes mini-implantes utilizados para mesialização de segundo molar inferior: análise por elementos finitos 3d / Study of different mini-implants used for lower molar mesialização: Analysis by finite elements 3d

Lisboa, Juliana da Costa 13 July 2018 (has links)
Submitted by Juliana da Costa Lisbôa (julianalisboa86@hotmail.com) on 2018-09-10T11:26:11Z No. of bitstreams: 1 Juliana C Lisboa.pdf: 1704367 bytes, checksum: 0a852a606d663babe8ff1cd313f64b57 (MD5) / Approved for entry into archive by Silvana Alvarez null (silvana@ict.unesp.br) on 2018-09-10T19:21:58Z (GMT) No. of bitstreams: 1 lisboa_jc_me_sjc.pdf: 1704367 bytes, checksum: 0a852a606d663babe8ff1cd313f64b57 (MD5) / Made available in DSpace on 2018-09-10T19:21:59Z (GMT). No. of bitstreams: 1 lisboa_jc_me_sjc.pdf: 1704367 bytes, checksum: 0a852a606d663babe8ff1cd313f64b57 (MD5) Previous issue date: 2018-07-13 / A perda do primeiro molar é uma situação comum na rotina do consultório e com isso surgem alternativas de tratamento para reabilitação, sendo uma delas, o fechamento de espaço através da mesialização do segundo molar. O uso de mini- implante proporciona ancoragem máxima, costuma ser bem tolerado pelo paciente e se destaca pela facilidade de instalação e remoção, apresentando dessa maneira desempenho clínico bastante favorável. O objetivo desse estudo foi analisar a distribuição de tensões em modelo que simula a mesialização de molar inferior utilizando diferentes tipos de mini-implantes. Embasado no método dos elementos finitos foi obtido modelo ósseo de mandíbula por recomposição de uma tomografia computadorizada realizada pelo software Invesalius (CTI, São Paulo, Brasil). O desenho do segundo molar foi obtido por técnica de recomposição tomográfica. Elementos de ancoragem auto-perfurantes da marca Neodent e também auto-rosqueantes da marca Titanium Fix foram desenhados e modelados por ferramenta de revolução do perfil desenhado no software Rhinoceros 3D, inseridos ao bloco ósseo e então submetidos a cargas de 200 cN. Os resultados foram calculados e analisados pelo programa Ansys 17.0 para verificação por meio da análise de mapas de deslocamento e tensões máximas principais, principalmente do osso cortical e indicaram que, dentro do modelo experimental, o ligamento periodontal apresentou valores baixos de tensão máxima principal, porém dentro dos valores fisiológicos para prover a movimentação, com visualização de áreas de compressão e de tração com escala entre 0,1 a -0,1 MPa. Concluiu-se que a carga testada permite a deslocamento dentário porém com tendência a giroversão. / The loss of the first molar is a common situation in the routine of the dentist and with this treatment alternatives for rehabilitation arises, one of them being the closure of space through the mesialization of the second molar. The use of mini-implants provides maximum anchorage, is well tolerated by the patient and stands out for ease installation and removal, thus presenting a very favorable clinical performance. The objective of this study was to analyze the stress distribution in a model that simulates the inferior molar mesialization using different types of mini- implants. Based on the finite element method, a mandible bone model was obtained by recomposing a computerized tomography performed by invesalius software (CTI, São Paulo, Brazil). The second molar design was obtained by a technique similar to the tomographic recomposition. Neodent self-piercing anchoring elements and also Titanium Fix self-piercing anchors were designed and modeled by a revolution tool in the Rhinoceros 3D software, inserted into the bone block and then subjected to loads of up to 200 cN. The results were calculated and analyzed by the Ansys 17.0 program for verification by means of the analysis of displacement maps and main maximum stresses, mainly of the cortical bone and indicated that, within the experimental model, the periodontal ligament presented low values of main maximum tension, however within the physiological values to provide the movement, with visualization of areas of compression and traction with scale between 0.1 and -0.1 MPa. It was concluded that the load tested allows dental displacement but with a tendency to gyroversion.
5

The optimal placement of geogrid reinforcement in landfill clay liners

Marx, David Hercules January 2017 (has links)
Continued population growth is placing strain on the waste disposal facilities available in South Africa. However, limited air space suitable for landfilling drives the need for alternative solutions such as piggyback landfills to expand the waste disposal capacity. This method entails building a new, fully lined, landfill on top of existing waste. However, the old underlying waste is prone settlement that can result in the cracking of new landfill clay liner. Geogrid reinforcement have been successfully used in clay liners to mitigate cracking induced by waste settlement. This research focused on investigating of the optimal reinforcement strategy (ORS) of such a liner subject to settlement. The ORS entails the optimal position for geogrid reinforcement in a liner, and the stiffness to be used at that position, given a total reinforcement cost. Firstly, the fracture behaviour of unreinforced clay liners was investigated by means of four point bending tests on clay beams. It was found that the fracture of this clay occurred in three stages: linear behaviour, followed by non-linear behaviour when micro-cracks forms and finally macro-cracks that opened once the peak load was reached. Thereafter, the behaviour of geogrid-reinforced clay liners, subjected to differential settlement, was investigated with finite element analyses in ABAQUS. A number of key factors were varied and the resulting change in behaviour of the liners was observed. These were: the overburden stress applied, clay liner thickness, magnitude of central settlement and the width and shape of the settlement trough developing in the underlying waste body. Based on the numerical results, a series of plane-strain centrifuge tests of reinforced clay liners subject to differential settlement were designed. An unreinforced liner, a liner reinforced at the bottom quarter, a liner reinforced at the top quarter and a liner reinforced at both the bottom and top quarters were tested. Laser scanner scans of the surface and strains calculated from digital image velocimetry results were used to compare the behaviour of the liners. Based on these results it is recommended that for optimal performance the available reinforcement should be divided between the top and bottom quarters of the liner to mitigate the effect of settlement. / Volgehoude bevolkingsgroei in Suid-Afrika plaas bestaande rommelstortingsfasiliteite onder druk. ’n Tekort aan grond geskik vir die bou van stortingsterreine moedig die soektog na alternatiewe oplossings soos abba-stortingsterreine aan. Hierdie metode behels ’n splinternuwe stortingsterrein wat bo-op bestaande rommel gebou word. Versakking van die bestaande rommel kan egter veroorsaak dat krake vorm in die nuwe stortingsterrein se kleivoering wat daarop lê. Vorige navorsing het die vorming van krake in die kleivoerings al welgeslaagd verhoed deur van georoosters as versterking gebruik te maak. Die huidige studie het op daardie navorsing gebou deur die optimale versterkings strategie (OVS) te bepaal vir so ’n kleivoering wat vervorm onder versakking van die onderliggende rommel. Die OVS definieer beide die optimale versterkings posisie in ’n kleivoering, en die styfheid van die georooster wat in daardie posisie geplaas moet word, gegewe ’n sekere totale versterkingskoste. Eerstens was daar ondersoek ingestel na die kraakgedrag van onversterkte kleivoerings. Vierpuntbuigtoetse van kleibalkies was hiervoor gebruik. Die krake het oor drie fases gevorm: eerstens was daar lineêre gedrag tot en met mikro-krake gevorm het. Dit is gevolg deur nie-lineêre gedrag wat gelei het tot makro-krake. Sodra die makro-krake gevorm het, is die maksimum las bereik wat die klei kon ondersteun. Na afloop van die balkbuigtoetse was eindige element analises in ABAQUS uitgevoer om die gedrag van versterkte kleivoerings wat bo-op versakkende afval lê te ondersoek. Die spanning toegepas op die oppervlak van die kleivoerings, die dikte van die kleivoerings en die versakkingstrogwydte, -vorm en -diepte was gevarieer om die effek daarvan op die gedrag van die kleivoerings te ondersoek. Na aanleiding van die resultate van die numeriese analise is ’n reeks sentrifuge toetse van kleivoerings wat aan versakking onderwerp word uitgevoer. ’n Onversterkte kleivoering, kleivoerings versterk in die boonste en onderste kwarte, en een versterk in beide die boonste en onderste kwart was getoets. Die gedrag van die verskillende kleivoerings was vergelyk deur die oppervlaktekrake op te meet met ’n laserskandeerder. Verder is die vervorming van die kleivoerings bepaal vanaf die verplasing van die grondpartikels tussen opeenvolgende digitale foto’s. Na aanleiding van hierdie resultate word dit aanbeveel dat die beskikbare georooster versterking opgedeel moet word tussen die boonste en onderste kwart van die kleivoerings ten einde optimale gedrag te verseker indien versakking sou plaasvind. / Dissertation (MEng)--University of Pretoria, 2017. / Deutscher Akademischer Austausch Dienst (DAAD) / Geosynthetics Interest Group of South Africa (GIGSA) / National Research Foundation of South Africa (NRF) / Civil Engineering / MEng / Unrestricted
6

Biomechanics of Spine Following the Long Segment Fusions and various Surgical Techniques to reduce the Occurrence of Proximal Junction Kyphosis (PJK)

Shah, Anoli Alaybhai January 2021 (has links)
No description available.
7

The effect of prism orientation and loading direction on contact stresses in prismatic enamel: implications for interpreting wear patterns

Macho, Gabriele A., Shimizu, D., Spears, I.R. January 2005 (has links)
No / The ability of prisms to effectively dissipate contact stress at the surface will influence wear rates in teeth. The aim of this investigation was to begin to quantify the effect of prism orientation on surface stresses. Seven finite element models of enamel microstructure were created, each model differing in the angulation of prism orientation with regard to the wear surface. For validation purposes, the mechanical behavior of the model was compared with published experimental data. In order to test the enamel under lateral loads, a compressed food particle was dragged across the surface from the dentino-enamel junction (DEJ) towards the outer enamel surface (OES). Under these conditions, tensile stresses in the enamel model increased with increases in the coefficient of friction. More importantly, stresses were found to be lowest in models in which the prisms approach the surface at lower angles (i.e., more obliquely cut prisms), and highest when the prisms approached the surface at 60° (i.e., less obliquely cut). Finally, the direction of travel of the simulated food particle was reversed, allowing comparison of the difference in behavior between trailing and leading edge enamels (i.e., when the food particle was dragged either towards or away from the DEJ). Stresses at the trailing edge were usually lower than stresses at the leading edge. Taken together with what is known about prism orientation in primate teeth, such findings imply greater wear resistance at the intercuspal region and less wear resistance at the lateral enamel at midcrown. Such findings appear to be supported by archeological evidence.
8

Behaviour and Design of Profiled Steel Cladding Systems Subject to Pull-through Failures

Mahaarachchi, Dhammika January 2003 (has links)
The common profiled steel cladding systems used in Australia and its neighboring countries are made of very thin (0.42 mm) high strength steel (G550 with a minimum yield stress of 550 MPa) and are crest-fixed. However, these claddings often suffer from local pull-through failures at their screw connections during high wind events such as storms and cyclones. Past experience and researches have shown that the loss of steel roofs has often occurred due to local pull-through failures of their screw connections under uplift or suction loading. Loss of claddings always led to a progressive collapse of the entire building. This situation is continuing because of the lower priority given to the design of roof and wall cladding systems. At present, steel design codes do not provide guidelines for the design of crest-fixed steel roof or wall claddings. Past research has shown that European and American recommendations for steel claddings cannot be used for Australian crest-fixed cladding systems as they were developed mainly for valley-fixed claddings subjected to gravity loading instead of crest-fixed claddings subjected to wind uplift/suction loading. Therefore at present the design of thin steel cladding systems is based on laboratory tests and is expensive. These situations inhibit the innovative design and advances in the steel cladding industry. Since the local pull-through failures in the less ductile G550 steel claddings are initiated by transverse splitting at the fastener hole, analytical studies have not been able to determine the pull-through failure loads accurately. Therefore in the first stage of this research an appropriate fracture/splitting criterion was developed using a series of large scale and small scale experiments of crest-fixed steel claddings. A shell finite element model of crest-fixed steel cladding was then developed that included the new fracture/splitting criterion and advanced features such as hyperelastic material modelling, contact simulations, residual stresses and geometric imperfections. The improved finite element analyses were able to model the pull-through failures associated with splitting as evident from the comparison of their results with the corresponding full-scale experimental results. An extensive series of parametric studies considering the effects of material properties and geometric parameters of the two commonly used trapezoidal cladding profiles was undertaken using finite element analysis. Appropriate design formulae for the pull-through and dimpling failure load of trapezoidal profiles were then derived for optimization purposes and to simplify the current design method. This will then lead to modification and optimisation of cladding profiles to satisfy the requirements of both strength (safety during cyclones and storms) and economy. This thesis presents the details of large scale experimental studies undertaken and the results including the criterion for the splitting/fracture failure of high strength steel cladding systems. It describes the many advances made in the finite element modelling of crest-fixed steel cladding systems including the effects of localised pull-through and dimpling failures. Finally, it presents a simple design method for trapezoidal steel cladding systems under wind uplift or suction loading.
9

Experimental investigations and finite element analyses of interface heat partition in a friction brake system. New modelling paradigm for describing friction brake systems to support studies of interface temperature, contact pressure, heat flux distribution and heat partition ratio by experiment and FE simulation

Qui, Le January 2018 (has links)
Operating temperature range is one of the primary design considerations for developing effective disc brake system performance. Very high braking temperatures can introduce effects detrimental to performance such as brake fade, premature wear, brake fluid vaporization, bearing failure, thermal cracks, and thermally-excited vibration [2]. This project is concerned with investigating deficiencies and proposing improvements in brake system Finite Element (FE) models in order to provide high quality descriptions of thermal behaviour during braking events. The work focuses on brake disc/pad models and the degree of rotational freedom allowed for the pad. Conventional models [10] allow no motion/or free motion of the pad. The present work investigates the effect on disc/pad interface temperature and pressure distributions of limited relaxations of this rotational restriction. Models are proposed, developed and validated that facilitate different rotational degrees of freedom (DoF) of the pad. An important influencing factor in friction brake performance is the development of an interface tribo-layer (ITL). It is reasonable to assume that allowing limited rotational motion of the pad will impact the development of the ITL (e.g. due to different friction force distributions) and hence influence temperature. Here the ITL is modelled in the numerical simulations as a function of its thickness distribution and thermal conductivity. Different levels of ITL thermal conductivity are defined in this work and results show that conductivity significantly a1qwffects interface temperature and heat partition ratio. The work is based around a set of test-rig experiments and FE model developments and simulations. For the experimental work, a small-scale test rig is used to investigate the friction induced bending moment effect on the pad/disc temperature. Significant non-uniform wear is observed across the friction surface of the pad, and reasons for the different wear rates are proposed and analyzed together with their effect on surface temperature. Following on from experiment a suite of models is developed in order to evidence the importance of limited pad motion and ITL behaviours. A 2D coupled temperature-displacement FE model is used to quantify the influence of different pad rotational degrees of freedom and so provide evidence for proposing realistic pad boundary settings for 3D models. Normal and high interface thermal conductance is used in 2D models and results show that the ITL thermal conductivity is an important factor influencing the maximum temperature of contact surfaces and therefore brake performance. The interface heat partition ratio is calculated by using the heat flux results and it is confirmed that this value is neither constant nor uniform across the interface surfaces. Key conclusions from the work are (i) that ITL thermal conductivity is an important factor influencing the interface temperature/heat flux distribution and their maximum values, (ii) that allowed motion of the pad significantly affects the interface pressure distribution and subsequently the temperature distribution, (iii) that the transient heat partition in friction braking is clearly quite different to the conventional friction-pair steady heat partition (the heat partition ratio is not uniformly distributed along the interface) and (iv) that the thickness of the ITL increases through braking events, reducing the heat transfer to the disc, and so providing a possible explanation for increasing pad temperature observed over the life time of a brake pad.
10

Next generation seismic fragility curves for california bridges incorporating the evolution in seismic design philosophy

Ramanathan, Karthik Narayan 02 July 2012 (has links)
Quantitative and qualitative assessment of the seismic risk to highway bridges is crucial in pre-earthquake planning, and post-earthquake response of transportation systems. Such assessments provide valuable knowledge about a number of principal effects of earthquakes such as traffic disruption of the overall highway system, impact on the regions' economy and post-earthquake response and recovery, and more recently serve as measures to quantify resilience. Unlike previous work, this study captures unique bridge design attributes specific to California bridge classes along with their evolution over three significant design eras, separated by the historic 1971 San Fernando and 1989 Loma Prieta earthquakes (these events affected changes in bridge seismic design philosophy). This research developed next-generation fragility curves for four multispan concrete bridge classes by synthesizing new knowledge and emerging modeling capabilities, and by closely coordinating new and ongoing national research initiatives with expertise from bridge designers. A multi-phase framework was developed for generating fragility curves, which provides decision makers with essential tools for emergency response, design, planning, policy support, and maximizing investments in bridge retrofit. This framework encompasses generational changes in bridge design and construction details. Parameterized high-fidelity three-dimensional nonlinear analytical models are developed for the portfolios of bridge classes within different design eras. These models incorporate a wide range of geometric and material uncertainties, and their responses are characterized under seismic loadings. Fragility curves were then developed considering the vulnerability of multiple components and thereby help to quantify the performance of highway bridge networks and to study the impact of seismic design principles on the performance within a bridge class. This not only leads to the development of fragility relations that are unique and better suited for bridges in California, but also leads to the creation of better bridge classes and sub-bins that have more consistent performance characteristics than those currently provided by the National Bridge Inventory. Another important feature of this research is associated with the development of damage state definitions and grouping of bridge components in a way that they have similar consequences in terms of repair and traffic implications following a seismic event. These definitions are in alignment with the California Department of Transportation's design and operational experience, thereby enabling better performance assessment, emergency response, and management in the aftermath of a seismic event. The fragility curves developed as a part of this research will be employed in ShakeCast, a web-based post-earthquake situational awareness application that automatically retrieves earthquake shaking data and generates potential damage assessment notifications for emergency managers and responders. / Errata added at request of advisor and approved by Graduate Office, March 15 2016.

Page generated in 0.0405 seconds