• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 621
  • 172
  • 81
  • 28
  • 18
  • 10
  • 10
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • Tagged with
  • 1323
  • 1323
  • 1323
  • 487
  • 220
  • 154
  • 154
  • 146
  • 134
  • 126
  • 118
  • 118
  • 113
  • 98
  • 92
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Laminar cracking in post-tensioned concrete nuclear containment buildings

Dolphyn, Bradley P. 27 May 2016 (has links)
As a critical public safety-related structure, the long-term integrity of post-tensioned concrete containment buildings (PCCs) is necessary for continued operation of the reactors they house. In 2009, during preparations for a steam generator replacement, extensive subsurface laminar cracking was identified in a portion of the Crystal River 3 (CR3) PCC in Florida, and the plant was permanently shut down in 2013. This study investigates potential contributing factors to the identified cracking with particular focus on the effects of high early-age temperatures on the cracking risk of the concrete, on the development of the concrete properties, and on the late-age structural behavior of the concrete. Two planar, full-scale mock-ups of a portion of the CR3 PCC were constructed and instrumented with temperature and strain gauges to monitor the thermal and mechanical behavior during representative concrete curing and post-tensioning loading. Standard- and match-cured concrete specimens were tested for determination of the time- and temperature-dependent development of thermal and mechanical concrete properties, and hydration parameters were determined for the mock-up cement paste for modeling the heat generation in the concrete. These properties and parameters were utilized in 3D finite element analysis of the mock-ups in COMSOL Multiphysics and compared with experimental results. Non-destructive evaluation via shear wave tomography was conducted on the mock-ups to identify flaws and determine the effectiveness of the methods for identifying delaminations between post-tensioning ducts approximately 10 inches beneath the concrete surface. Though early-age thermal stresses were determined not to have caused cracking in the mock-ups, the high early-age concrete temperatures resulted in decreased late-age mechanical properties that were shown to contribute to greater concrete cracking risk when the mock-up was post-tensioned. Tensile stresses exceeding the tensile strength of the concrete were identified along the post-tensioning ducts when biaxial post-tensioning loads were applied in finite element analysis, but the stresses decreased rapidly with increased distance from the ducts. Through parametric modeling, increasing the tensile strength of the concrete was identified as an effective means of reducing the cracking risk in PCCs. Additionally, relationships between the mechanical properties for the standard- and match-cured specimens were identified that could enable prediction of in-place or match-cured concrete properties based only on the results of tests on fog-cured specimens.
212

Mechanical property determination for flexible material systems

Hill, Jeremy Lee 27 May 2016 (has links)
Inflatable Aerodynamic Decelerators (IADs) are a candidate technology NASA began investigating in the late 1960’s. Compared to supersonic parachutes, IADs represent a decelerator option capable of operating at higher Mach numbers and dynamic pressures. IADs have seen a resurgence in interest from the Entry, Descent, and Landing (EDL) community in recent years. The NASA Space Technology Roadmap (STR) highlights EDL systems, as well as, Materials, Structures, Mechanical Systems, and Manufacturing (MSMM) as key Technology Areas for development in the future; recognizing deployable decelerators, flexible material systems, and computational design of materials as essential disciplines for development. This investigation develops a multi-scale flexible material modeling approach that enables efficient high-fidelity IAD design and a critical understanding of the new materials required for robust and cost effective qualification methods. The approach combines understanding of the fabric architecture, analytical modeling, numerical simulations, and experimental data. This work identifies an efficient method that is as simple and as fast as possible for determining IAD material characteristics while not utilizing complicated or expensive research equipment. This investigation also recontextualizes an existing mesomechanical model through validation for structures pertaining to the analysis of IADs. In addition, corroboration and elaboration of this model is carried out by evaluating the effects of varying input parameters. Finally, the present investigation presents a novel method for numerically determining mechanical properties. A sub-scale section that captures the periodic pattern in the material (unit cell) is built. With the unit cell, various numerical tests are performed. The effective nonlinear mechanical stiffness matrix is obtained as a function of elemental strains through correlating the unit cell force-displacement results with a four node membrane element of the same size. Numerically determined properties are validated for relevant structures. Optical microscopy is used to capture the undeformed geometry of the individual yarns.
213

Finite element analysis of localised rolling to reduce residual stress and distortion

Cozzolino, Luis D. January 2013 (has links)
Fusion welding processes cause residual stress due to the uneven heat distribution produced by the moving welding torch. These residual stresses are characterised by a large tensile component in the welding direction. Due to the self-equilibrated nature of the residual stress, compressive ones are present in the far field next to the weld seam, which can cause different kind of distortion such as bending or buckling. Welding residual stress can be responsible of premature failure of the components, such as stress crack corrosion, buckling, and reduction of fatigue life. Localised rolling is a stress engineering technique that can be used to reduce the residual stress and distortion caused by welding. It induces plastic strain in the rolling direction, counteracting the plastic strain produced during welding. In this thesis three techniques were investigated, pre-weld rolling, post-weld rolling, and in situ rolling. These techniques have been seldom studied in the past, particularly pre-weld rolling; consequently the mechanisms are poorly understood. Finite element models allow stress and strain development during both welding and rolling processes to be better understood, providing an improved understanding of the mechanisms involved and aiding process development. A literature survey was done to find the state of the art of the computational welding mechanics simulations, stress management, and the residual stress measurement techniques, as well as the knowledge gaps such as, the thermal losses through the backing-bar in the thermal simulation, the frictional interaction in the rolling process, and the material properties of the steel used in the models. In the literature not many models that investigate the management of welding residual stress were found. After this, the general considerations and assumptions for the welding thermal mechanical models presented in this thesis were discussed. The effect of different backing-bar conditions, as well as different material properties where investigated. Both influenced the residual stress profile to varying degrees. In particular, temperature dependent heat loss to the backing-bar was necessary to capture the improved heat loss near the weld. The distortion predicted by the model was investigated to determine whether it was due to bending or buckling phenomena. Lastly, the temperature distribution and residual stress predictions were validated against thermocouple and neutron diffraction measurements conducted by Coules et al. [1–3]. Pre-weld rolling was the first of the three rolling methods considered, in which rolling is applied to the plates before performing GMA butt-welds. The principle behind this technique consisted in inducing tensile residual stress in the weld region before welding; therefore, it is similar to mechanically tensioning the weld, which can significantly reduce the residual stress and distortion. However, there was no significant change in the tensile residual stresses. On the other hand, it was possible to achieve a small reduction in the distortion, when the plates were rolled on the opposite surface to the weld; rolling in this way induced distortion in the opposite direction to the distortion induced by welding, reducing the magnitude of the latter. These results were compared with experiments conducted by Coules et al. [1,4]. A subsequent investigation combined pre-weld rolling with post-weld heating. With this additional process the residual stress and distortion were significantly reduced, and flatter residual stress profile was achieved. The post-weld rolling and in situ rolling techniques were discussed afterwards. In the post-weld rolling models, rolling was applied after the weldment was cooled to room temperature. In in situ rolling the roller was applied on top of the weld bead at some distance behind the torch, while it was still hot. The principle behind these techniques consisted in applying positive plastic strain to the weld bead region by a roller, counteracting the negative plastic strains produced in the welding process. Two roller profiles were investigated, namely, grooved, and double flat rollers. The post-weld rolling on top of the weld bead models, which used the grooved roller, showed good agreement against experimental results, producing a large reduction of the residual stress and distortion. Some discrepancies were present when the weld toes were rolled with the dual flat roller. The former roller was more efficient for reducing residual stress and distortion. The influence of different friction coefficients (between the roller and weldment, and between the backing-bar and the weldment), were investigated. It showed significant dependency on the residual stress distribution when high rolling loads were used. The frictional interaction constrained the contact area inducing more compressive stress in the core of the weld bead; therefore it produced more tensile residual stress in the surface of the weldment. Additionally, the influence of rolling parameters on the through-thickness residual stress variation was investigated. Low loads only influence the residual stress near the surface, while high loads affected the material through the entire thickness. When the dual flat roller was used to roll next to the weld bead, significant compressive residual stress was induce in the weld bead; however, the residual stress reduction was very sensitive to the contact of the roller to the weld toes; therefore, when rolling a weld bead that varies in shape along the weld, the residual stress reduction is not uniform and varies along the length. On the other hand, the in situ rolling did not produced significant residual stress or distortion reduction in all the cases analysed. The rolling occurred when the material was still hot and the residual stress was subsequently formed as the material cooled to room temperature. Numerical modelling was a very useful tool for understanding the development of stress and plastic strain during the welding and rolling processes.
214

Investigation of residual stresses in the laser melting of metal powders in additive layer manufacturing

Roberts, Ibiye Aseibichin January 2012 (has links)
Laser Melting (LM) is an Additive Layer Manufacturing (ALM) process used to produce three-dimensional parts from metal powders by fusing the material in a layerby- layer manner controlled by a CAD model. During LM, rapid temperature cycles and steep temperature gradients occur in the scanned layers. Temperature gradients induce thermal stresses which remain in the part upon completion of the process (i.e. residual stresses). These residual stresses can be detrimental to the functionality and structural integrity of the built parts. The work presented in this thesis developed a finite element model for the purpose of investigating the development of the thermal and residual stresses in the laser melting of metal powders. ANSYS Mechanical software was utilised in performing coupled thermal-structural field analyses. The temperature history was predicted by modelling the interaction of the moving laser heat source with the metal powders and base platform. An innovative ‘element birth and death’ technique was employed to simulate the addition of layers with time. Temperature dependent material properties and strain hardening effects were also considered. The temperature field results were then used for the structural field analysis to predict the residual stresses and displacements. Experiments involving laser melting Ti-6Al-4V powder on a steel platform were performed. Surface topography analyses using a laser scanning confocal microscope were carried out to validate the numerically predicted displacements against surface measurements. The results showed that the material strain hardening model had a direct effect on the accuracy of the predicted displacement results. Using the numerical model, parametric studies were carried out to investigate the effects of a number of process variables on the magnitude of the residual stresses in the built layers. The studies showed that: (i) the average residual stresses increased with the number of melted powder layers, (ii) increasing the chamber temperature to 300°C halved the longitudinal stresses. At 300°C, compressive stresses appeared on the Ti64 surface layer, (iii) reducing the raster length from 1 mm to 0.5 mm reduced the average longitudinal stress in the top layer by 51 MPa (0.04σy), (iv) reducing the laser scan speed from 1200 mm/s to 800 mm/s increased the longitudinal stress by 57 MPa (0.05σy) but reduced the transverse stress by 46 MPa (0.04σy).
215

Maxillofacial fractures and craniocerebral injuries

Huempfner-Hierl, Heike, Schaller, Andreas, Hierl, Thomas 21 April 2015 (has links) (PDF)
Background: Severe facial trauma is often associated with intracerebral injuries. So it seemed to be of interest to study stress propagation from face to neurocranium after a fistlike impact on the facial skull in a finite element analysis. / Hintergrund: Frakturen des Gesichtsschädels gehen häufig mit intrakraniellen Verletzungen einher. Deshalb erschien es interessant, die Weiterleitung und Verteilung von Spannungen, wie sie bei einem Faustschlag auftreten, vom Gesichtsschädel zum Hirnschädel in einer Finite Elemente Analyse zu untersuchen.
216

MOLECULAR TRANSPORT PROPERTIES THROUGH CARBON NANOTUBE MEMBRANES

Majumder, Mainak 01 January 2007 (has links)
Molecular transport through hollow cores of crystalline carbon nanotubes (CNTs) are of considerable interest from the fundamental and application point of view. This dissertation focuses on understanding molecular transport through a membrane platform consisting of open ended CNTs with ~ 7 nm core diameter and ~ 1010 CNTs/cm2 encapsulated in an inert polymer matrix. While ionic diffusion through the membrane is close to bulk diffusion expectations, gases and liquids were respectively observed to be transported ~ 10 times faster than Knudsen diffusion and ~ 10000-100000 times faster than hydrodynamic flow predictions. This phenomenon has been attributed to the non-interactive and frictionless graphitic interface. Functionalization of the CNT tips was observed to change selectivity and flux through the CNT membranes with analogy to gate-keeper functionality in biological membranes. An electro-chemical diazonium grafting chemistry was utilized for enhancing the functional density on the CNT membranes. A strategy to confine the reactions at the CNT tips by a fast flowing liquid column was also designed. Characterization using electrochemical impedance spectroscopy and dye assay indicated ~ 5-6 times increase in functional density. Electrochemical impedance spectroscopy experiments on CNT membrane/electrode functionalized with charged macro-molecules showed voltage-controlled conformational change. Similar chemistry has been applied for realizing voltage-gated transport channels with potential application in trans-dermal drug delivery. Electrically-facilitated transport ( a geometry in which an electric field gradient acts across the membrane) through the CNT and functionalized CNT membranes was observed to be electrosmotically controlled. Finally, a simulation framework based on continuum electrostatics and finite elements has been developed to further the understanding of transport through the CNT membranes.
217

Design of transverse flux machines using analytical calculations&finite element Analysis

Anpalahan, Peethamparam January 2001 (has links)
No description available.
218

Measurement evaluation and FEM simulation of bridge dynamics

Andersson, Andreas, Malm, Richard January 2004 (has links)
<p>The aim of this thesis is to analyse the effects of train induced vibrations in a steel Langer beam bridge. A case study of a bridge over the river Ljungan in Ånge has been made by analysing measurements and comparing the results with a finite element model in ABAQUS. The critical details of the bridge are the hangers that are connected to the arches and the main beams. A stabilising system has been made in order to reduce the vibrations which would lead to increased life length of the bridge.</p><p>Initially, the background to this thesis and a description of the studied bridge are presented. An introduction of the theories that has been applied is given and a description of the modelling procedure in ABAQUS is presented.</p><p>The performed measurements investigated the induced strain and accelerations in the hangers. The natural frequency, the corresponding damping coefficients and the displacement these vibrations leads to has been evaluated. The vibration-induced stresses, which could lead to fatigue, have been evaluated. The measurement was made after the existing stabilising system has been dismantled and this results in that the risk of fatigue is excessive. The results were separated into two parts: train passage and free vibrations. This shows that the free vibrations contribute more and longer life expectancy could be achieved by introducing dampers, to reduce the amplitude of the amplitude of free vibrations.</p><p>The finite element modelling is divided into four categories: general static analysis, eigenvalue analysis, dynamic analysis and detailed analysis of the turn buckle in the hangers. The deflection of the bridge and the initial stresses due to gravity load were evaluated in the static analysis. The eigenfrequencies were extracted in an eigenvalue analysis, both concerning eigenfrequencies in the hangers as well as global modes of the bridge. The main part of the finite element modelling involves the dynamic simulation of the train passing the bridge. The model shows that the longer hangers vibrate excessively during the train passage because of resonance. An analysis of a model with a stabilising system shows that the vibrations are damped in the direction along the bridge but are instead increased in the perpendicular direction. The results from the model agree with the measured data when dealing with stresses. When comparing the results concerning the displacement of the hangers, accurate filtering must be applied to obtain similar results.</p>
219

Aeroelastic Analysis of Rotor Blades Using Three Dimensional Flexible Multibody Dynamic Analysis

Das, Manabendra January 2008 (has links)
This study presents an approach based on the floating frame of reference method to model complex three-dimensional bodies in a multibody system. Unlike most of the formulations based on the floating frame of reference method, which assume small or moderate deformations, the present formulation allows large elastic deformations within each frame by using the co-rotational form of the updated Lagrangian description of motion. The implicit integration scheme is based on the Generalized-alpha method, and kinematic joints are invoked in the formulation through the coordinate partitioning method. The resulting numerical scheme permits the usage of relatively large time steps even though the flexible bodies may experience large elastic deformations. A triangular element, based on the first order shear deformable theory, has been developed specifically for folded plate and shell structures. The plate element does not suffer from either shear or aspect-ratio locking under transverse and membrane bending, respectively. A stiffened plate element has been developed that combines a shear deformable plate with a Timoshenko beam. A solid element, that utilized the isoparametric formulation along with incompatible modes, and one-dimensional elements are also included in the element library. The tools developed in the present work are then utilized for detailed rotorcraft applications. As opposed to the conventional approach of using beam elements to represent the rotor blade, the current approach focuses on detailed modeling of the blade using plate and solid elements. A quasi-steady model based on lifting line theory is utilized to compute the aerodynamic loads on the rotor blade in order to demonstrate the capabilities of the proposed tool to model rotorcraft aeroelasticity.
220

Modelling degradation in adhesive joints subjected to fluctuating service conditions

Mubashar, Aamir January 2010 (has links)
Adhesive joining is an attractive alternative to conventional joining methods, such as welding and mechanical fastening. The benefits of adhesive bonding include: the ability to form lightweight, high stiffness structures; joining of different types of materials; better fatigue performance, and reduction in the stress concentrations or the effects of the heat associated with welding. However, concerns about the durability of adhesive joints still hinder their widespread use in structural applications. Moisture has been identified as one of the major factors affecting joint durability. This is especially important in applications where joints are exposed to varying moisture conditions throughout their useful life. The aim of this research is to develop models to predict degradation in adhesive joints under varying moisture conditions. This was achieved by a combination of experimental and numerical methods. Experiments were carried out to characterise the moisture uptake and mechanical properties of the single part epoxide adhesive, FM73-M. Single lap joints were manufactured from aluminium alloy 2024 in heat treated (T3) and non heat treated (O) states using the FM73-M, BR127 adhesive-primer system. Tensile testing of the single lap joints was carried out after the joints had been exposed to hot-wet conditioning environments. Models were developed for predicting moisture concentration in the adhesive under cyclic moisture absorption and desorption conditions. A finite element based methodology incorporating moisture history was developed to predict the cyclic moisture concentration. In the next step, a novel finite element based methodology, which was based on moisture history effects, was developed to determine stresses in bonded joints after curing, conditioning and tensile testing. In the final step, a moisture history dependent cohesive zone element based damage and failure criterion was introduced to predict damage initiation, crack growth and failure under variable moisture and temperature conditions. The methodology proposed in this work and its implementation by finite element method provides a systematic approach for determining the degradation in adhesive joints under varying environmental conditions and accomplishes the aim of this research.

Page generated in 0.0701 seconds