• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 508
  • 192
  • 188
  • 34
  • 24
  • 19
  • 13
  • 9
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 1059
  • 1059
  • 494
  • 493
  • 233
  • 225
  • 172
  • 146
  • 137
  • 123
  • 101
  • 99
  • 89
  • 87
  • 77
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Adaptive finite element methods for fluorescence enhanced optical tomography

Joshi, Amit 30 October 2006 (has links)
Fluorescence enhanced optical tomography is a promising molecular imaging modality which employs a near infrared fluorescent molecule as an imaging agent and time-dependent measurements of fluorescent light propagation and generation. In this dissertation a novel fluorescence tomography algorithm is proposed to reconstruct images of targets contrasted by fluorescence within the tissues from boundary fluorescence emission measurements. An adaptive finite element based reconstruction algorithm for high resolution, fluorescence tomography was developed and validated with non-contact, planewave frequency-domain fluorescence measurements on a tissue phantom. The image reconstruction problem was posed as an optimization problem in which the fluorescence optical property map which minimized the difference between the experimentally observed boundary fluorescence and that predicted from the diffusion model was sought. A regularized Gauss-Newton algorithm was derived and dual adaptive meshes were employed for solution of coupled photon diffusion equations and for updating the fluorescence optical property map in the tissue phantom. The algorithm was developed in a continuous function space setting in a mesh independent manner. This allowed the meshes to adapt during the tomography process to yield high resolution images of fluorescent targets and to accurately simulate the light propagation in tissue phantoms from area-illumination. Frequency-domain fluorescence data collected at the illumination surface was used for reconstructing the fluorescence yield distribution in a 512 cm3, tissue phantom filled with 1% Liposyn solution. Fluorescent targets containing 1 micro-molar Indocyanine Green solution in 1% Liposyn and were suspended at the depths of up to 2cm from the illumination surface. Fluorescence measurements at the illumination surface were acquired by a gain-modulated image intensified CCD camera system outfitted with holographic band rejection and optical band pass filters. Excitation light at the phantom surface source was quantified by utilizing cross polarizers. Rayleigh resolution studies to determine the minimum detectable sepatation of two embedded fluorescent targets was attempted and in the absence of measurement noise, resolution down to the transport limit of 1mm was attained. The results of this work demonstrate the feasibility of high-resolution, molecular tomography in clinic with rapid non-contact area measurements.
12

Análise estrutural de juntas rebitadas de uso aeronaútico

Spinelli, Hione de Aquino [UNESP] 02 March 2004 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:28:34Z (GMT). No. of bitstreams: 0 Previous issue date: 2004-03-02Bitstream added on 2014-06-13T18:34:52Z : No. of bitstreams: 1 spinelli_ha_me_guara.pdf: 5696262 bytes, checksum: a92c7f3bfcf7f018cb912356a4d4638c (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Universidade Estadual Paulista (UNESP) / Revestimento de estruturas aeronaúticas são, em sua maioria, unidos por meio de juntas rebitadas. Para o dimensionamento dessas juntas deverão ser consideradas não somente a resistência das mesmas diante de condições limites de carregamento estático, mas também sua resistência a fadiga quando sujeitas a carregamento cíclico e sua resistência residual no eventual surgimento de trincas. Nesta dissertação são estudadas duas juntas: sobreposta e de topo simples. A modelagem das juntas é feita no software de elementos finitos ANSYS. O objetivo das simulações é reproduzir, de maneira satisfatória, o comportamento das mesmas quando submetida a esforços de tração monotônica. Há uma grande preocupação com simulação do comportamento dos rebites durante o tracionamento das juntas. Comparando os reultados das análises e os resultados dos ensaios (extensômetros e fotoelasticidade). é então proposta uma nova modelagem para os rebites. Por fim, é estudada a excentricidade que as juntas sobreposta e de topo simples apresentam, através da análise teórica do comportamento da tensão do momento secundário e do fator de momento não linear. / Aerospace structure surface are mostly, united with rivet joint. These joint specifications must include the limit resistance within static charging conditions as well the limit resistance for fatigue within cyclic charging and residual resistance in eventual crack show up. In this paper two type ofjoint were studied; overlap and top. The modelings were done in ANSYS, infinity element software. The Main objective in these simulations is to reproduce, in a satisfactory manner, the behavior of these joint when subject to monotonic traction stress. There is a major concern about the rivet behavior simulation during joint traction experiments. Comparing the analyses and the results of these essay (strain gages and photoelasticity) a new rivet modeling is proposal. In thes paper, it is also studied the overlap joint and top joint eccentricity behavior thru a theoretical secondary moment tension behavior analysis and also the non-linear moment factor.
13

Análise estrutural de juntas rebitadas de uso aeronaútico /

Spinelli, Hione de Aquino. January 2004 (has links)
Resumo: Revestimento de estruturas aeronaúticas são, em sua maioria, unidos por meio de juntas rebitadas. Para o dimensionamento dessas juntas deverão ser consideradas não somente a resistência das mesmas diante de condições limites de carregamento estático, mas também sua resistência a fadiga quando sujeitas a carregamento cíclico e sua resistência residual no eventual surgimento de trincas. Nesta dissertação são estudadas duas juntas: sobreposta e de topo simples. A modelagem das juntas é feita no software de elementos finitos ANSYS. O objetivo das simulações é reproduzir, de maneira satisfatória, o comportamento das mesmas quando submetida a esforços de tração monotônica. Há uma grande preocupação com simulação do comportamento dos rebites durante o tracionamento das juntas. Comparando os reultados das análises e os resultados dos ensaios (extensômetros e fotoelasticidade). é então proposta uma nova modelagem para os rebites. Por fim, é estudada a excentricidade que as juntas sobreposta e de topo simples apresentam, através da análise teórica do comportamento da tensão do momento secundário e do fator de momento não linear. / Abstract: Aerospace structure surface are mostly, united with rivet joint. These joint specifications must include the limit resistance within static charging conditions as well the limit resistance for fatigue within cyclic charging and residual resistance in eventual crack show up. In this paper two type ofjoint were studied; overlap and top. The modelings were done in ANSYS, infinity element software. The Main objective in these simulations is to reproduce, in a satisfactory manner, the behavior of these joint when subject to monotonic traction stress. There is a major concern about the rivet behavior simulation during joint traction experiments. Comparing the analyses and the results of these essay (strain gages and photoelasticity) a new rivet modeling is proposal. In thes paper, it is also studied the overlap joint and top joint eccentricity behavior thru a theoretical secondary moment tension behavior analysis and also the non-linear moment factor. / Orientador: Fernando de Azevedo Silva / Coorientador: Carlos Eduardo Chaves / Banca: Luis Rogerio de Oliveira Hein / Banca: Marcio Tadeu de Almeida / Mestre
14

Development of non-linear bond stress-slip models for reinforced concrete structures in fire

Khalaf, Jamal January 2017 (has links)
Exposure of concrete structures to high temperatures leads to significant losses in mechanical and physical properties of concrete and steel reinforcement as well as the bond characteristics between them. Degradation of bond properties in fire may significantly influence the load capacity of concrete structures. Therefore the bond behaviours need to be considered for the structural fire engineering design of reinforced concrete structures. At present, the information about the material degradations of concrete and reinforcing steel bars at elevated temperatures are generally available. However, the research on the response of the bond characteristic between concrete and reinforcing steel bar at elevated temperatures is still limited. Due to the lack of robust models for considering the influence of the bond characteristics between the concrete and steel bar at elevated temperatures, the majority of the numerical models developed for predicting the behaviour of reinforced concrete structures in fire was based on the full bond interaction. Hence, the main purpose of this research is to develop robust numerical models for predicting the bond-slip between concrete and the reinforcement under fire conditions. Therefore, the bond-slip between the concrete and reinforcement for conventional and prestress concrete structures at both ambient and elevated temperatures has been investigated in this research. Two models have been developed in this study: the first model is to simulate the behaviour of bond-slip of deformed steel bars in normal concrete at room temperature and under fire conditions. The model is established based on a partly cracked thick-wall cylinder theory and the smeared cracking approach is adopted to consider the softening behaviour of concrete in tension. The model is able to consider a number of parameters: such as different concrete properties and covers, different steel bar diameters and geometries. The proposed model has been incorporated into the Vulcan program for 3D analysis of reinforced concrete structures in fire. The second robust model has been developed to predict the bond stress-slip relationship between the strand and concrete of prestressed concrete structural members. In this model, two bond-slip curves have been proposed to represent the bond-slip characteristics for the three-wire and seven-wire strands. This model considers the variation of concrete properties, strands’ geometries and the type of strand surface (smooth or indented). The degradation of materials and bond characteristic at elevated temperatures are also included in the model. The proposed models have been validated against previous experimental results at both ambient and elevated temperatures and good agreements have been achieved. A comprehensive parametric study has been carried out in this research to examine the influence of bond-slip model on the structural behaviours of normal reinforced concrete structures. The study investigated the most important factors that can affect the bond characteristics between concrete and steel reinforcement at elevated temperatures. These factors are: the concrete cover, spalling of concrete, concrete compressive and tensile strengths.
15

Application of a large deformation viscoelastic model to the unstable necking of polyethylene

Sweeney, John, Coates, Philip D., Collins, T.L.D., Duckett, R.A. January 2002 (has links)
No / A large deformation, rate dependent model is applied to high temperature stretching of polyethylene. The theory is physically motivated, consisting of a model of a network of chain molecules to represent regions dominated by amorphous polymer, with embedded rigid spheres to introduce strain concentration similar to that caused by hard crystalline regions. Dependence on time and rate is introduced via shear stress driven diminution of the sphere radii. Experimentally, the rate dependence of the stress is such that, under tensile deformation, there is no necking associated with the initial yield point. Necking occurs at higher strains; this is associated with a weakening of rate dependence with increasing strain, which is a natural feature of the theory. It provides a realistic model of large tensile deformations, which in general involve the evolution of necking instabilities. It is implemented in a finite element scheme by using the package ABAQUS.
16

Nanoindentation analysis of oriented polypropylene: Influence of elastic properties in tension and compression

Vgenopoulos, D., Sweeney, John, Grant, Colin A., Thompson, Glen P., Spencer, Paul E., Caton-Rose, Philip D., Coates, Philip D. 30 July 2018 (has links)
Yes / Polypropylene has been oriented by solid-phase deformation processing to draw ratios up to ∼16, increasing tensile stiffness along the draw direction by factors up to 12. Nanoindentation of these materials showed that moduli obtained for indenter tip motion along the drawing direction (3) into to 1–2 plane (axial indentation) were up to 60% higher than for indenter tip motion along the 2 direction into the 1–3 plane (transverse indentation). In static tests, tensile and compressive determinations of elastic modulus gave results differing by factors up to ∼5 for strain along the draw direction. A material model incorporating both orthotropic elasticity and tension/compression asymmetry was developed for use with Finite Element simulations. Elastic constants for the oriented polypropylene were obtained by combining static testing and published ultrasonic data, and used as input for nanoindentation simulations that were quantitatively successful. The significance of the tension/compression asymmetry was demonstrated by comparing these predictions with those obtained using tensile data only, which gave predictions of indentation modulus higher by up to 70%.
17

Computational Techniques for Efficient Solution of Discretized Biot's Theory for Fluid Flow in Deformable Porous Media

Lee, Im Soo 09 September 2008 (has links)
In soil and rock mechanics, coupling effects between geomechanics field and fluid-flow field are important to understand many physical phenomena. Coupling effects in fluid-saturated porous media comes from the interaction between the geomechanics field and the fluid flow. Stresses subjected on the porous material result volumetric strains and fluid diffusion in the pores. In turn, pore pressure change cause effective stresses change that leads to the deformation of the geomechanics field. Coupling effects have been neglected in traditional geotechnical engineering and petroleum engineering however, it should not be ignored or simplified to increases reliability of the results. The coupling effect in porous media was theoretically established in the poroelasticity theory developed by Biot, and it has become a powerful theory for modeling three-dimensional consolidation type of problem. The analysis of the porous media with fully-coupled simulations based on the Biot's theory requires intensive computational effort due to the large number of interacting fields. Therefore, advanced computational techniques need to be exploited to reduce computational time. In order to solve the coupled problem, several techniques are currently available such as one-way coupling, partial-coupling, and full-coupling. The fully-coupled approach is the most rigorous approach and produces the most correct results. However, it needs large computational efforts because it solves the geomechanics and the fluid-flow unknowns simultaneously and monolithically. In order to overcome this limitation, staggered solution based on the Biot's theory is proposed and implemented using a modular approach. In this thesis, Biot's equations are implemented using a Finite Element method and/or Finite Difference method with expansion of nonlinear stress-strain constitutive relation and multi-phase fluid flow. Fully-coupled effects are achieved by updating the compressibility matrix and by using an additional source term in the conventional fluid flow equation. The proposed method is tested in multi-phase FE and FD fluid flow codes coupled with a FE geomechanical code and numerical results are compared with analytical solutions and published results. / Ph. D.
18

A Finite Element, Reduced Order, Frequency Dependent Model of Viscoelastic Damping

Salmanoff, Jason 06 February 1998 (has links)
This thesis concerns itself with a finite element model of nonproportional viscoelastic damping and its subsequent reduction. The Golla-Hughes-McTavish viscoelastic finite element has been shown to be an effective tool in modeling viscoelastic damping. Unlike previous models, it incorporates physical data into the model in the form of a curve fit of the complex modulus. This curve fit is expressed by minioscillators. The frequency dependence of the complex modulus is accounted for by the addition of internal, or dissipation, coordinates. The dissipation coordinates make the viscoelastic model several times larger than the original. The trade off for more accurate modeling of viscoelasticity is increased model size. Internally balanced model order reduction reduces the order of a state space model by considering the controllability/observability of each state. By definition, a model is internally balanced if its controllability and observability grammians are equal and diagonal. The grammians serve as a ranking of the controllability/observability of the states. The system can then be partitioned into most and least controllable/observable states; the latter can be statically reduced out of the system. The resulting model is smaller, but the transformed coordinates bear little resemblance to the original coordinates. A transformation matrix exists that transforms the reduced model back into original coordinates, and it is a subset of the transformation matrix leading to the balanced model. This whole procedure will be referred to as Yae's method within this thesis. By combining GHM and Yae's method, a finite element code results that models nonproportional viscoelastic damping of a clamped-free, homogeneous, Euler-Bernoulli beam, and is of a size comparable to the original elastic finite element model. The modal data before reduction compares well with published GHM results, and the modal data from the reduced model compares well with both. The error between the impulse response before and after reduction is negligible. The limitation of the code is that it cannot model sandwich beam behavior because it is based on Euler-Bernoulli beam theory; it can, however, model a purely viscoelastic beam. The same method, though, can be applied to more sophisticated beam models. Inaccurate results occur when modes with frequencies beyond the range covered by the curve fit appear in the model, or when poor data are used. For good data, and within the range modeled by the curve fit, the code gives accurate modal data and good impulse response predictions. / Master of Science
19

Simulating Dynamic Vehicle Maneuvers Using Finite Elements For Use In Design Of Integrated Composite Structure

Angelini, Nicholas Alexander 07 April 2014 (has links)
Formula SAE (FSAE) chassis systems are increasing being manufactured with integrated composite structures in an effort to increase the performance of the system while decreasing weight. The increased use of composite structures requires more details of the loading conditions and evaluation metrics than the mild steel structures they are replacing. The prototypical FSAE steel space frame chassis designs are heavily structured around the mandated safety rules that doubled as mostly satisfactory structures for vehicle loads. The use of composite structures and the directionality of their material properties has created a need for more detailed loading scenarios to evaluate their ability to transfer load. This thesis presents a framework for evaluating the chassis structure not only through the standard static twist analysis, but increased use of modal analysis and dynamic vehicle maneuvers using an attached suspension. The suspension joints and springs/dampers are modeled using Abaqus Connector Elements, allowing for the use of complex kinematic degrees of freedom definitions required to accurately model the suspension behavior. The elements used to represent the joints and springs are detailed as well as their superiority over traditional multi-point constraints in this context. The use of modal analysis is used for a more direct comparison of not only the efficiency of stiffness in the chassis alone, but also how the chassis interacts with the suspension. The natural frequencies from the modal analysis along with the static twist distribution along the chassis are presented as a replacement for the static torsional stiffness performance metric. By using dynamic vehicle maneuvers the chassis-suspension structure can be evaluated based on loads developed during the typical use of the FSAE vehicle. The dynamic nature of the analysis also allows for the inclusion of mass in the loading profile as well as the load variation with time that can be hard to achieve with static analysis. The framework for a bump event as well as a constant-speed-constant-radius turn are presented. The bump analysis is designed to evaluate the system's response to straight line dynamic events, while the turning maneuver evaluates the lateral components of the suspension load transfer capabilities. For the turn analysis both a spring/damper tire model using connector elements and a rolling tire model are presented. Intermediate checks on suspension and chassis behavior are evaluated to verify the modeling techniques; while the maneuver results are evaluated based on trends and overall motion rather than magnitudes due to lack of data at the time of the analysis. / Master of Science
20

Regularity and approximation of a hyperbolic-elliptic coupled problem

Kruse, Carola January 2010 (has links)
In this thesis, we investigate the regularity and approximation of a hyperbolic-elliptic coupled problem. In particular, we consider the Poisson and the transport equation where both are assigned nonhomogeneous Dirichlet boundary conditions. The coupling of the two problems is executed as follows. The right hand side function of the Poisson equation is the solution ρ of the transport equation whereas the gradient field E = −∇u, with u being solution of the Poisson problem, is the convective field for the transport equation. The analysis is done throughout on a nonconvex, not simply connected domain that is supposed to be homeomorph to an annular domain. In the first part of this thesis, we will focus on the existence and uniqueness of a classical solution to this highly nonlinear problem using the framework of Hölder continuous functions. Herein, we distinguish between a time dependent and time independent formulation. In both cases, we investigate the streamline functions defined by the convective field E. These are used in the time dependent case to derive an operator equation whose fixed point is the streamline function to the gradient of the classical solution u. In the time independent setting, we formulate explicitly the solution operators L for the Poisson and T for the transport equation and show with a fixed point argument the existence and uniqueness of a classical solution (u,ρ). The second part of this thesis deals with the approximation of the coupled problem in Sobolev spaces. First, we show that the nonlinear transport equation can be formulated equivalently as variational inequality and analyse its Galerkin finite element discretization. Due to the nonlinearity of the coupled problem, it is necessary to use iterative solvers. We will introduce the staggered algorithm which is an iterative method solving alternating the Poisson and transport equation until convergence is obtained. Assuming that LοT is a contraction in the Sobolev space H1(Ω), we will investigate the convergence of the discrete staggered algorithm and obtain an error estimate. Subsequently, we present numerical results in two and three dimensions. Beside the staggered algorithm, we will introduce other iterative solvers that are based on linearizing the coupled problem by Newton’s method. We illustrate that all iterative solvers converge satisfactorily to the solution (u, ρ).

Page generated in 0.0408 seconds