• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 142
  • 103
  • 60
  • 22
  • 19
  • 14
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 399
  • 399
  • 232
  • 155
  • 93
  • 92
  • 79
  • 70
  • 66
  • 65
  • 62
  • 59
  • 57
  • 54
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Modelling of the heliosphere and cosmic ray transport / Jasper L. Snyman

Snyman, Jasper Lodewyk January 2007 (has links)
Thesis (M.Sc. (Physics))--North-West University, Potchefstroom Campus, 2008.
42

Computational upscaled modeling of heterogeneous porous media flow utilizing finite volume method

Ginting, Victor Eralingga 29 August 2005 (has links)
In this dissertation we develop and analyze numerical method to solve general elliptic boundary value problems with many scales. The numerical method presented is intended to capture the small scales effect on the large scale solution without resolving the small scale details, which is done through the construction of a multiscale map. The multiscale method is more effective when the coarse element size is larger than the small scale length. To guarantee a numerical conservation, a finite volume element method is used to construct the global problem. Analysis of the multiscale method is separately done for cases of linear and nonlinear coefficients. For linear coefficients, the multiscale finite volume element method is viewed as a perturbation of multiscale finite element method. The analysis uses substantially the existing finite element results and techniques. The multiscale method for nonlinear coefficients will be analyzed in the finite element sense. A class of correctors corresponding to the multiscale method will be discussed. In turn, the analysis will rely on approximation properties of this correctors. Several numerical experiments verifying the theoretical results will be given. Finally we will present several applications of the multiscale method in the flow in porous media. Problems that we will consider are multiphase immiscible flow, multicomponent miscible flow, and soil infiltration in saturated/unsaturated flow.
43

Study of the dynamics of conductive fluids in the presence of localised magnetic fields. Application to the "Lorentz Force Flowmeter".

Viré, Axelle 02 September 2010 (has links)
When an electrically conducting fluid moves through a magnetic field, fluid mechanics and electromagnetism are coupled. This interaction is the object of magnetohydrodynamics, a discipline which covers a wide range of applications, from electromagnetic processing to plasma- and astro-physics. In this dissertation, the attention is restricted to turbulent liquid metal flows, typically encountered in steel and aluminium industries. Velocity measurements in such flows are extremely challenging because liquid metals are opaque, hot and often corrosive. Therefore, non-intrusive measurement devices are essential. One of them is the Lorentz force flowmeter. Its working principle is based on the generation of a force acting on a charge, which moves in a magnetic field. Recent studies have demonstrated that this technique can measure efficiently the mean velocity of a liquid metal. In the existing devices, however, the measurement depends on the electrical conductivity of the fluid. In this work, a novel version of this technique is developed in order to obtain measurements that are independent of the electrical conductivity. This is particularly appealing for metallurgical applications, where the conductivity often fluctuates in time and space. The study is entirely numerical and uses a flexible computational method, suitable for industrial flows. In this framework, the cost of numerical simulations increases drastically with the level of turbulence and the geometry complexity. Therefore, the simulations are commonly unresolved. Large eddy simulations are then very promising, since they introduce a subgrid model to mimic the dynamics of the unresolved turbulent eddies. The first part of this dissertation focuses on the quality and reliability of unresolved numerical simulations. The attention is drawn on the ambiguity that may arise when interpretating the results. Owing to coarse resolutions, numerical errors affect the performances of the discrete model, which in turn looses its physical meaning. In this work, a novel implementation of the turbulent strain rate appearing in the models is proposed. As opposed to its usual discretisation, the present strain rate is in accordance with the discrete equations of motion. Two types of flow are considered: decaying turbulence located far from boundaries, and turbulent flows between two parallel and infinite walls. Particular attention is given to the balance of resolved kinetic energy, in order to assess the role of the model. The second part of this dissertation deals with a novel version of Lorentz force flowmeters, consisting in one or two coils placed around a circular pipe. The forces acting on each coil are recorded in time as the liquid metal flows through the pipe. It is highlighted that the auto- or cross-correlation of these forces can be used to determine the flowrate. The reliability of the flowmeter is first investigated with a synthetic velocity profile associated to a single vortex ring, which is convected at a constant speed. This configuration is similar to the movement of a solid rod and enables a simple analysis of the flowmeter. Then, the flowmeter is applied to a realistic three-dimensional turbulent flow. In both cases, the influence of the geometrical parameters of the coils is systematically assessed.
44

Hybrid Time-Domain Methods and Wire Models for Computational Electromagnetics

Ledfelt, Gunnar January 2001 (has links)
No description available.
45

Development of a High-order Finite-volume Method for the Navier-Stokes Equations in Three Dimensions

Rashad, Ramy 04 March 2010 (has links)
The continued research and development of high-order methods in Computational Fluid Dynamics (CFD) is primarily motivated by their potential to significantly reduce the computational cost and memory usage required to obtain a solution to a desired level of accuracy. In this work, a high-order Central Essentially Non-Oscillatory (CENO) finite-volume scheme is developed for the Euler and Navier-Stokes equations in three dimensions. The proposed CENO scheme is based on a hybrid solution reconstruction procedure using a fixed central stencil. A solution smoothness indicator facilitates the hybrid switching between a high-order k-exact reconstruction technique, and a monotonicity preserving limited piecewise linear reconstruction algorithm. The resulting scheme is applied to the compressible forms of the Euler and Navier-Stokes equations in three dimensions. The latter of which includes the application of this high-order work to the Large Eddy Simulation (LES) of turbulent non-reacting flows.
46

A High-order Finite-volume Scheme for Large-Eddy Simulation of Premixed Flames on Multi-block Cartesian Mesh

Regmi, Prabhakar 26 November 2012 (has links)
Large-eddy simulation (LES) is emerging as a promising computational tool for reacting flows. High-order schemes for LES are desirable to achieve improved solution accuracy with reduced computational cost. In this study, a parallel, block-based, three-dimensional high-order central essentially non-oscillatory (CENO) finite-volume scheme for LES of premixed turbulent combustion is developed for Cartesian mesh. This LES formulation makes use of the flame surface density (FSD) for subfilter-scale reaction rate modelling. An algebraic model is used to approximate the FSD. A detailed explanation of the governing equations for LES and the mathematical framework for CENO schemes are presented. The CENO reconstruction is validated and is also applied to three-dimensional Euler equations prior to its application to the equations governing LES of reacting flows.
47

Block-based Adaptive Mesh Refinement Finite-volume Scheme for Hybrid Multi-block Meshes

Zheng, Zheng Xiong 27 November 2012 (has links)
A block-based adaptive mesh refinement (AMR) finite-volume scheme is developed for solution of hyperbolic conservation laws on two-dimensional hybrid multi-block meshes. A Godunov-type upwind finite-volume spatial-discretization scheme, with piecewise limited linear reconstruction and Riemann-solver based flux functions, is applied to the quadrilateral cells of a hybrid multi-block mesh and these computational cells are embedded in either body-fitted structured or general unstructured grid partitions of the hybrid grid. A hierarchical quadtree data structure is used to allow local refinement of the individual subdomains based on heuristic physics-based refinement criteria. An efficient and scalable parallel implementation of the proposed algorithm is achieved via domain decomposition. The performance of the proposed scheme is demonstrated through application to solution of the compressible Euler equations for a number of flow configurations and regimes in two space dimensions. The efficiency of the AMR procedure and accuracy, robustness, and scalability of the hybrid mesh scheme are assessed.
48

A High-order Finite-volume Scheme for Large-Eddy Simulation of Premixed Flames on Multi-block Cartesian Mesh

Regmi, Prabhakar 26 November 2012 (has links)
Large-eddy simulation (LES) is emerging as a promising computational tool for reacting flows. High-order schemes for LES are desirable to achieve improved solution accuracy with reduced computational cost. In this study, a parallel, block-based, three-dimensional high-order central essentially non-oscillatory (CENO) finite-volume scheme for LES of premixed turbulent combustion is developed for Cartesian mesh. This LES formulation makes use of the flame surface density (FSD) for subfilter-scale reaction rate modelling. An algebraic model is used to approximate the FSD. A detailed explanation of the governing equations for LES and the mathematical framework for CENO schemes are presented. The CENO reconstruction is validated and is also applied to three-dimensional Euler equations prior to its application to the equations governing LES of reacting flows.
49

Block-based Adaptive Mesh Refinement Finite-volume Scheme for Hybrid Multi-block Meshes

Zheng, Zheng Xiong 27 November 2012 (has links)
A block-based adaptive mesh refinement (AMR) finite-volume scheme is developed for solution of hyperbolic conservation laws on two-dimensional hybrid multi-block meshes. A Godunov-type upwind finite-volume spatial-discretization scheme, with piecewise limited linear reconstruction and Riemann-solver based flux functions, is applied to the quadrilateral cells of a hybrid multi-block mesh and these computational cells are embedded in either body-fitted structured or general unstructured grid partitions of the hybrid grid. A hierarchical quadtree data structure is used to allow local refinement of the individual subdomains based on heuristic physics-based refinement criteria. An efficient and scalable parallel implementation of the proposed algorithm is achieved via domain decomposition. The performance of the proposed scheme is demonstrated through application to solution of the compressible Euler equations for a number of flow configurations and regimes in two space dimensions. The efficiency of the AMR procedure and accuracy, robustness, and scalability of the hybrid mesh scheme are assessed.
50

Direct Forcing Immersed Boundary Methods: Finite Element Versus Finite Volume Approach

Frisani, Angelo 1980- 14 March 2013 (has links)
Two immersed boundary methods (IBM) for the simulation of conjugate heat transfer problems with complex geometries are introduced: a finite element (IFEM) and a finite volume (IFVM) immersed boundary methods are discussed. In the IFEM a projection approach is presented for the coupled system of time-dependent incompressible Navier-Stokes equations (NSEs) and energy equation in conjunction with the immersed boundary method for solving fluid flow and heat transfer problems in the presence of rigid objects not represented by the underlying mesh. The IBM allows solving the flow for geometries with complex objects without the need of generating a body-fitted mesh. Dirichlet boundary constraints are satisfied applying a boundary force at the immersed body surface. Using projection and interpolation operators from the fluid volume mesh to the solid surface mesh (i.e., the “immersed” boundary) and vice versa, it is possible to impose the extra constraint to the NSEs as a Lagrange multiplier in a fashion very similar to the effect pressure has on the momentum equations to satisfy the divergence-free constraint. The IFEM approach presented shows third order accuracy in space and second order accuracy in time when the simulation results for the Taylor-Green decaying vortex are compared to the analytical solution. For the IFVM a ghost-cell approach with sharp interface scheme is used to enforce the boundary condition at the fluid/solid interface. The interpolation procedure at the immersed boundary preserves the overall second order accuracy of the base solver. The developed ghost-cell method is applied on a staggered configuration with the Semi-Implicit Method for Pressure-Linked Equations Revised algorithm. Second order accuracy in space and first order accuracy in time are obtained when the Taylor-Green decaying vortex test case is compared to the IFVM analytical solution. Computations were performed using the IFEM and IFVM approaches for the two-dimensional flow over a backward-facing step, two-dimensional flow past a stationary circular cylinder, three-dimensional flow past a sphere and two and three-dimensional natural convection in an enclosure with/without immersed body. The numerical results obtained with the discussed IFEM and IFVM were compared against other IBMs available in literature and simulations performed with the commercial computational fluid dynamics code STAR-CCM+/V7.04.006. The benchmark test cases showed that the numerical results obtained with the implemented immersed boundary methods are in good agreement with the predictions from STAR-CCM+ and the numerical data from the other IBMs. The immersed boundary method based of finite element approach is numerically more accurate than the IBM based on finite volume discretization. In contrast, the latter is computationally more efficient than the former.

Page generated in 0.0337 seconds