Spelling suggestions: "subject:"[een] FLOW ASSURANCE"" "subject:"[enn] FLOW ASSURANCE""
11 |
Development of a coupled wellbore-reservoir compositional simulator for damage prediction and remediationShirdel, Mahdy 01 October 2013 (has links)
During the production and transportation of oil and gas, flow assurance issues may occur due to the solid deposits that are formed and carried by the flowing fluid. Solid deposition may cause serious damage and possible failure to production equipment in the flow lines. The major flow assurance problems that are faced in the fields are concerned with asphaltene, wax and scale deposition, as well as hydrate formations. Hydrates, wax and asphaltene deposition are mostly addressed in deep-water environments, where fluid flows through a long path with a wide range of pressure and temperature variations (Hydrates are generated at high pressure and low temperature conditions). In fact, a large change in the thermodynamic condition of the fluid yields phase instability and triggers solid deposit formations. In contrast, scales are formed in aqueous phase when some incompatible ions are mixed. Among the different flow assurance issues in hydrocarbon reservoirs, asphaltenes are the most complicated one. In fact, the difference in the nature of these molecules with respect to other hydrocarbon components makes this distinction. Asphaltene molecules are the heaviest and the most polar compounds in the crude oils, being insoluble in light n-alkenes and readily soluble in aromatic solvents. Asphaltene is attached to similarly structured molecules, resins, to become stable in the crude oils. Changing the crude oil composition and increasing the light component fractions destabilize asphaltene molecules. For instance, in some field situations, CO₂ flooding for the purpose of enhanced oil recovery destabilizes asphaltene. Other potential parameters that promote asphaltene precipitation in the crude oil streams are significant pressure and temperature variation. In fact, in such situations the entrainment of solid particulates in the flowing fluid and deposition on different zones of the flow line yields serious operational challenges and an overall decrease in production efficiency. The loss of productivity leads to a large number of costly remediation work during a well life cycle. In some cases up to $5 Million per year is the estimated cost of removing the blockage plus the production losses during downtimes. Furthermore, some of the oil and gas fields may be left abandoned prematurely, because of the significance of the damage which may cause loss about $100 Million. In this dissertation, we developed a robust wellbore model which is coupled to our in-house developed compositional reservoir model (UTCOMP). The coupled wellbore/reservoir simulator can address flow restrictions in the wellbore as well as the near-wellbore area. This simulator can be a tool not only to diagnose the potential flow assurance problems in the developments of new fields, but also as a tool to study and design an optimum solution for the reservoir development with different types of flow assurance problems. In addition, the predictive capability of this simulator can prescribe a production schedule for the wells that can never survive from flow assurance problems. In our wellbore simulator, different numerical methods such as, semi-implicit, nearly implicit, and fully implicit schemes along with blackoil and Equation-of-State compositional models are considered. The Equation-of-State is used as state relations for updating the properties and the equilibrium calculation among all the phases (oil, gas, wax, asphaltene). To handle the aqueous phase reaction for possible scales formation in the wellbore a geochemical software package (PHREEQC) is coupled to our simulator as well. The governing equations for the wellbore/reservoir model comprise mass conservation of each phase and each component, momentum conservation of liquid, and gas phase, energy conservation of mixture of fluids and fugacity equations between three phases and wax or asphaltene. The governing equations are solved using finite difference discretization methods. Our simulation results show that scale deposition is mostly initiated from the bottom of the wellbore and near-wellbore where it can extend to the upper part of the well, asphaltene deposition can start in the middle of the well and the wax deposition begins in the colder part of the well near the wellhead. In addition, our simulation studies show that asphaltene deposition is significantly affected by CO₂ and the location of deposition is changed to the lower part of the well in the presence of CO₂. Finally, we applied the developed model for the mechanical remediation and prevention procedures and our simulation results reveal that there is a possibility to reduce the asphaltene deposition in the wellbore by adjusting the well operation condition. / text
|
12 |
Effect of surfactants on methane hydrate formation and dissociationRamaswamy, Divya 12 July 2011 (has links)
Dissociation of gas hydrates has been the primary concern of the oil and gas industry for flow assurance, mainly in an offshore environment. There is also a growing interest in the rapid formation of gas hydrates for gas storage, transport of natural gas and carbon sequestration. In this thesis, we experimentally measure the kinetics of formation and dissociation of methane hydrates and the effect of various anionic and cationic surfactants such as sodium dodecyl sulfate (SDS), cetyl trimethylammonium bromide (CTAB) and alpha olefin sulfonate (AOS) on the association/dissociation rate constants. The importance and necessity of micelle formation in these surfactants has been studied. The effect of foam generation on the rate of formation of these hydrates has also been measured. SDS was found to significantly decrease the induction time for hydrate formation. There was an added decrease in the induction time when a foamed mixture of water and SDS was used. On the other hand CTAB and AOS had an inhibiting effect. The contribution of micelles towards promoting hydrate formation was demonstrated with a series of experiments using SDS. The micelles formed by these surfactants appear to serve as nucleation sites for the association of hydrates. New experimental data is presented to show that some surfactants and the use of foam can significantly increase the rate of hydrate formation. Other surfactants are shown to act as inhibitors. A new experimental setup is presented that allows us to distinguish between surfactants that act as promoters and inhibitors for hydrate formation. / text
|
13 |
[en] SUBSEA SEPARATION SYSTEMS AS A STRATEGY TO MITIGATE FLOW ASSURANCE PROBLEMS / [pt] SISTEMAS DE SEPARAÇÃO SUBMARINA COMO ESTRATÉGIA PARA MITIGAR PROBLEMAS DE GARANTIA DE ESCOAMENTORODRIGO PIZARRO LAVALLE DA SILVA 21 June 2016 (has links)
[pt] A produção de óleo e gás através de sistemas submarinos de produção vem
sendo testada e realizada em diversos campos. As etapas iniciais do processamento
primário, que eram realizadas nas Unidades Estacionárias de Produção (UEPs),
vêm sendo deslocadas para o leito marinho, reduzindo os problemas de garantia de
escoamento e aumentando a área disponível nas UEPs para processamento do óleo.
Em primeiro lugar, o presente trabalho descreve os principais projetos de separação
submarina já instalados e as motivações para suas aplicações. Adicionalmente, o
presente trabalho apresenta os benefícios dos sistemas submarinos de separação
água-óleo por meio dos resultados obtidos com um simulador de escoamento
multifásico elaborado ao longo desta dissertação. Baseado no método de Beggs e
Brill, este simulador foi desenvolvido na base computacional do Matlab e é capaz
de avaliar a perda de carga no escoamento multifásico da produção em diversos
arranjos submarinos. Por meio do simulador, foram feitas análises de sensibilidade
para avaliar os efeitos das alterações nos principais parâmetros que influenciam o
escoamento: razão água-óleo, razão gás-óleo, vazão de produção e grau API. Ao
final do trabalho, são apresentados os cálculos das perdas de carga de dois arranjos
submarinos hipotéticos que apresentam desafios relacionados à garantia de
escoamento e a solução destes problemas com a instalação de sistemas submarinos
de separação água-óleo. / [en] The production of oil and gas by subsea production systems has been tested
and performed for several fields. The first steps of the primary oil and gas
processing, which were held in Stationary Production Units (SPU), have been
shifted to the seabed, reducing flow assurance problems and increasing the
available area in SPUs for oil processing. On top to describing the main subsea
separation projects and the reasons for their applications, the objective of this work
is to present the benefits of subsea oil-water separation systems by means the results
obtained with a multiphase flow simulator developed along this masters
dissertation. Based on the method of Beggs and Brill, this simulator has been
developed on Matlab platform and is able to evaluate the pressure drop of
multiphase flows in various subsea production arrangements. With the simulator, a
number of sensitivity analyzes is performed by changing the main parameters that
affect the flow pressure drop: water-oil ratio, gas-oil ratio, production flow rate and
API gravity. At the end of this work, the simulation results of two hypothetical
subsea scenarios that have flow assurance problems and the solution of these
problems with the installation of oil-water subsea separation systems are presented.
|
14 |
[en] WAX DEPOSITION IN TURBULENT FLOW / [pt] DEPOSIÇÃO DE PARAFINA EM ESCOAMENTOS TURBULENTOSRAFAEL CAMEL ALBAGLI 10 May 2017 (has links)
[pt] A deposição de parafina é um fenômeno presente nos sistemas de produção de petróleo (principalmente em águas profundas devido às baixas temperaturas), consistindo na aderência de frações sólidas de hidrocarbonetos nas colunas e linhas, conduzindo à redução da área aberta ao fluxo até o eventual bloqueio. A compreensão dos mecanismos que influenciam na deposição ainda não foi totalmente alcançada. Dada a relevância deste tipo de sistema para o desenvolvimento de novos campos e a ausência de uma teoria consolidada que seja capaz de explicar a evolução e as características do depósito, a limitação de produção por este fenômeno é um dos principais problemas de garantia de escoamento. Visando a aumentar o conhecimento acerca dos fenômenos existentes no processo de deposição, e identificar os mecanismos dominantes, diferentes modelos matemáticos podem ser confrontados com dados experimentais. Geralmente, os escoamentos encontrados ao longo das linhas de produção encontram-se no regime turbulento. Dessa forma, no presente trabalho, desenvolveu-se um modelo de turbulência de duas equações k–omega, acoplado com o modelo entalpia-porosidade, no qual o depósito é considerado um meio poroso. A partir de um equilíbrio termodinâmico determinam-se as espécies que saem de solução e a sua distribuição é determinada pela equação de conservação molar. As equações de conservação foram resolvidas pelo método de volumes finitos, utilizando o esquema Power-law e Euler implícito para as discretizações espacial e temporal. Comparações com dados experimentais em um duto anular foram realizadas, apresentando boa concordância para o regime permanente, mas superestimando a espessura do depósito durante o regime transiente. Constatou-se redução de espessura do depósito com o aumento do número de Reynolds. / [en] Wax deposition is a phenomenon present in oil production systems (mainly in deep water due to the low temperatures), which consists in the adhesion of solids fractions of hydrocarbon to tubing and lines, reducing the area opened to flow until be completely blocked. The comprehension of the mechanisms that influences in the deposition has not yet been fully achieved. Given the relevance of this kind of system in new fields development and the absence of a theory able to explain the deposit s evolution and characteristics, the production limitation caused by this phenomenon is one of the main issues in flow assurance. Aiming to expand the knowledge about the phenomena that exist in deposition process and identify dominant mechanisms, different mathematical models can be compared with experimental data. The flow regime in production lines is usually turbulent. Thus, in this work, a two equation k-omega turbulence model coupled to the enthalpy-porosity model, where the deposit is a porous media, was developed. From a thermodynamic equilibrium, the species that comes out of solution are determined while their distribution are determined by each molar conservation equation. The conservations equations were solved with the finite volume method, employing the Power-law and implicit Euler schemes to handle the spatial and temporal discretization. Comparisons with experimental data in an annular duct were realized, showing good agreement in the steady state. The deposit thickness, howeve, was overestimated during the transient. The deposit thickness reduction with the Reynold number increase was verified.
|
15 |
[en] CLATHRATE HYDRATE FORMING IN WATER-IN-OIL EMULSIONS / [pt] FORMAÇÃO DE HIDRATO A PARTIR DE EMULSÃO ÁGUA EM ÓLEOGUILHERME LOPES BARRETO 26 July 2018 (has links)
[pt] Uma combinação de fatores geológicos e econômicos exige que as empresas produzam petróleo e gás em campos com profundidades de água cada vez maiores. Muitas das vezes não é econômico, ou no pior dos casos impraticável, instalar uma plataforma sobre os cabeçotes dos poços, por isso acaba se tornando comum transportar petróleo e gás através de amarras submarinas que podem ser de até 145km ou mais. Geralmente isso significa que as temperaturas são baixas o bastante e as pressões altas o suficiente para tornar aquele ambiente dentro do que chamamos de envelope de formação de hidrato e ações deverão ser tomadas afim de evitar os plugs de hidrato. Como resultado, a indústria foi forçada a intensificar sua pesquisa em químicos e sistemas que evitasse a formação da estrutura cristalina. Uma dessas pesquisas em estudo é a avaliação de um fluido modelo, emulsão A/O, analisando suas principais características e verificando as propriedades reológicas da estrutura cristalina em formação. Para tornar a pesquisa viável, este hidrato é formado a pressão atmosférica utilizando moléculas hóspedes que proporcionam essa formação em tal pressão e baixa temperatura. Logo, é utilizada uma substância líquida chamada ciclopentano, que substituirá o gás natural e irá proporcionar a formação do hidrato nestas novas condições. Dessa forma, este trabalho apresentou diferentes emulsões A/O, de acordo com a porcentagem de água, e reologia do hidrato formado para cada uma delas. / [en] A combination of geological and economic factors requires companies to produce oil and gas in fields with increasing water depths. It is often impractical to install a platform over the heads of the wells, so it is becoming common to transport oil and gas through underwater moorings that can be up to 145 km or more. Usually this means that the temperatures are low enough and the pressures high enough to make that environment into what we call a hydrate formation envelope and actions should be taken to avoid the hydrate plugs. As a result, the industry was forced to intensify its research into chemicals and systems that prevented the formation of the crystalline structure. One of these researches is the evaluation of a model fluid, A / O emulsion, analyzing its main characteristics and checking the rheological properties of the crystalline structure in formation. To make the search feasible, this hydrate is formed at atmospheric pressure using guest molecules that provide such formation at such pressure and low temperature. Therefore, a liquid substance called cyclopentane is used, which will replace the natural gas and will provide the formation of the hydrate under these new conditions. In this way, this work presented different A / O emulsions, according to the percentage of water, and rheology of the hydrate formed for each of them.
|
16 |
An Experimental Study on the Effects of Heat and Chemical Inhibitors on the Flow Behaviour of Waxy Crude Oils. The Effects of Heat and Chemical Inhibitors on the Rheological Properties of Waxy Crude Oils with regard to Pumping in PipelinesMohamed, Fathia A.B. January 2019 (has links)
Waxy crude oils (1/3 of oil produced worldwide), pumping through
pipelines considered risky operation due to the crude wax content (15-40
wt.%) and to the temperature at which wax supersaturates and precipitates,
leading to the danger of pipe blockage, eventually resulting, in multimillion
dollars loss in production and maintenance.
This research undertaken to develop operational strategy of waxy crude
pipelines, considering the crude and crude gel properties and flow conditions.
The research problem was approached by characterizing the crude gel with
and without additives using chromatography (GC), differential scanning
calorimetry (DSC), cross polarised microscopy (CPM), controlled stress and
oscillatory shear rheology (CSR and OSR), the principal parameters being the
crude temperature and the rate at which the crude was cooled. GC and DSC
were useful in establishing wax composition, content and wax appearance
temperature (WAT). Control stress rheometer proved to be the most
appropriate as it measured the reduction in apparent viscosity at full production
(10-50 s-1 shear rate), near shutdown (1 s-1
) and yielding when the oil was
statically cooled. On this basis, it was established that the wax inhibitor was the most effective. CPM revealed that only the wax inhibitor changed the
structure of the gel, disrupting its otherwise knitted crystal network. Dilution
with the light crude oil merely reduced the wax content and the pour point
depressant reduced the gelling temperature. OSR provided a check on CSR
and confirmed the gelation temperature measured. CSR provided the yield
stress measured, it also provided comprehensive data that can be used for
theoretical modelling of this complex flow. / Libyan Petroleum Institute, Libya
|
17 |
[en] SIMULATIONS AND EXPERIMENTAL RESULTS FOR A HIGH-POWER LASER TOOL TO DISSOCIATE HYDRATE ON OIL AND GAS PRODUCTION EQUIPMENT IN DEEP WATER / [pt] SIMULAÇÕES E RESULTADOS EXPERIMENTAIS PARA UMA FERRAMENTA A LASER DE ALTA POTÊNCIA PARA DISSOCIAR HIDRATO EM EQUIPAMENTOS DE PRODUÇÃO DE PETRÓLEO E GÁS EM ÁGUAS PROFUNDASBRUNO GRECO DE SOUSA 03 October 2024 (has links)
[pt] A indústria de Petróleo e Gás enfrenta desafios, particularmente a formação
de hidratos em equipamentos submarinos, que podem bloquear válvulas de
controle e colocar em risco a segurança e a produtividade. Os métodos
atuais de remoção de hidratos são frequentemente subótimos devido aos
altos custos, ao tempo de consumo e ao potencial dano ambiental. Este
projeto está desenvolvendo uma ferramenta a laser de alta potência como
uma solução alternativa para a remoção de hidratos, aproveitando a recente
disponibilidade comercial de tais lasers.
A ferramenta, projetada para ser operada por um Veículo Operado Remotamente (ROV) subaquático a profundidades de 600 m - 3500 m, é baseada
em um laser de diodo azul de alta potência. Funciona transferindo calor
para o hidrato, seja por absorção direta da radiação laser ou por condução
de calor de partes adjacentes que absorvem a radiação.
Dois protótipos foram projetados e construídos, equipados com lasers de
700 W e 1800 W, respectivamente. Esses protótipos consistem em cinco
módulos: refrigeração, energia, principal, óptico e skid. Simulações e testes
experimentais estão sendo conduzidos em um ambiente de laboratório para
facilitar o avanço da ferramenta e garantir um design compacto e eficiente
antes dos testes de campo. / [en] The Oil and Gas industry faces challenges, particularly the formation of
hydrates on subsea equipment, which can block control valves and risk safety
and productivity. Current hydrate removal methods are often suboptimal
due to high costs, time consumption, and potential environmental damage.
This project is developing a high-power laser tool as an alternative solution
for hydrate removal, leveraging the recent commercial availability of such
lasers.
The tool, designed to be operated by an underwater Remotely Operated
Vehicle (ROV) at depths of 600 m - 3500 m, is based on a high-power blue
diode laser. It works by transferring heat to the hydrate either by direct
absorption of the laser radiation or by heat conduction from adjacent parts
absorbing the radiation.
Two prototypes have been designed and constructed, equipped with 700 W
and 1800 W lasers respectively. These prototypes consist of five modules:
cooling, power, main, optical, and skid. Simulations and experimental
tests are being conducted in a laboratory setting to facilitate the tool s
advancement and ensure a compact and efficient design before field trials.
|
18 |
Method Development for Corrosion Testing of Carbon Steel and Ni-based Alloy Coatings Exposed to Gas Hydrate Formation EnvironmentsOzigagu, Christopher E. 08 1900 (has links)
Gas hydrate formation and corrosion can cause serious safety and flow assurance problems in subsea environments. One aspect that has been given less attention is the corrosion behavior of materials in gas hydrate formation environment (GHFE). This work introduces a new technique/method for corrosion testing of materials exposed to low temperatures GHFEs. This technique allows pH monitoring, and control of test conditions like temperature. In this work, GHFE is defined as an environment that includes water, methanol and its degraded products in the presence of corrosive agents like CO2 and chloride salt at gas hydrate formation temperatures (GHFT). After 20 hrs immersion in CO2-saturated salinity environment at GHFT, as-deposited Ni-Mo alloy coating has the highest corrosion resistance of 33.28 kΩ cm2. The corrosion resistance dropped to 14.36 kΩ cm2 and 11.11 kΩ cm2 in the sweet low-salinity and sweet high-salinity test solutions respectively. The combined results of SEM/EDX showed that the Ni-Mo coating oxide layer broke down quicker in sweet high-salinity environment than sweet low-salinity environment. When carbon steel was immersed in a CO2-saturated high salinity environment at GHFT, there was slight overall change in corrosion rate (CR) as salt concentration increase from 3 wt% to 25 wt%. In degraded methanol environment, methanol showed an inhibitive effect on the corrosion of carbon steel. Higher methanol content (up to 50 vol. %) increased the corrosion rate of carbon steel at gas hydrate formation temperature, however, the corrosion rates were lower with methanol contents between 10 to 20 vol%.
|
19 |
[en] STUDIES ON WAX DEPOSIT FORMATION IN PIPELINES / [pt] ESTUDOS SOBRE A FORMAÇÃO DE DEPÓSITOS DE PARAFINA EM DUTOSJOAO CLAUDIO BASTOS LIMA 21 January 2019 (has links)
[pt] O entendimento do fenômeno de deposição de parafina em linhas submarinas de produção e transporte de petróleo é importante para a construção de modelos de previsão que auxiliem no projeto e operação destas linhas. No presente trabalho, foram realizados experimentos controlados em escala de laboratório com o objetivo de obter informações sobre alguns aspectos relevantes da deposição de parafina. Para isso, foi utilizada uma seção de testes anular, com condições de contorno bem controladas, operando com um fluido de testes com propriedades bem conhecidas, e apresentando uma distinção marcada entre a composição do solvente e aquela das parafinas. A seção de testes era equipada com uma sonda de temperatura de pequenas dimensões acoplada a um micrômetro, o que permitiu a medição de perfis de temperatura dentro do depósito para condições de escoamento. A sonda também possibilitou a obtenção da temperatura da interface depósito-líquido ao longo da formação do depósito. Os testes incluíram a variação do número de Reynolds do escoamento anular, da temperatura da parede fria, e da taxa de resfriamento da parede. Uma câmera de vídeo de alta taxa de aquisição de imagens acoplada a lentes de aproximação foi utilizada para determinar a posição da sonda de temperatura em relação à interface do depósito. Os resultados mostraram que a temperatura da interface se mantém estável em um valor intermediário entre a TIAC (Temperatura Inicial de Aparecimento de Cristais) e a TDC (Temperatura de Desaparecimento de Cristais), desde quando a deposição de inicia até quando depósito atinge sua espessura de regime permanente. A câmera de vídeo forneceu imagens originais sobre a formação dos depósitos, notadamente sobre uma região acima do depósito em formação onde cristais de parafina são carregados pelo escoamento, sem que um número significativo destes cristais depositasse ou fosse aprisionado no depósito. As imagens revelaram também que estes cristais não são oriundos de cristais arrancados do depósito em posições a montante no início do duto, mas têm origem no seio do fluido adjacente à interface do depósito. A sonda de temperatura foi também utilizada na medição da temperatura nesta região de líquido acima da interface do depósito onde, por um período de tempo, cristais de parafina escoavam. / [en] The proper understanding of the wax deposition phenomena in subsea oil pipelines is relevant to the development of more accurate models to aid in the design and operation of these lines. In the present work, laboratory-scale experiments under well-controlled conditions were conducted to study some relevant aspects of wax deposition. To this end, an annular deposition test section was employed, using a test fluid with known properties, and displaying a marked distinction between the solvent and the wax chemical components. The test section was equipped with a temperature probe of small dimensions, driven by a micrometer head. This probe allowed the measurement of temperature profiles within the wax deposit, under flowing conditions, and also the temperature of the deposit-liquid interface as the deposit was formed. The tests encompassed the variation of the annular flow Reynolds number, the cold wall temperature and the wall cooling rate. A high-frame-rate video camera coupled to magnifying lenses was used to provide images of the temperature probe and of the deposit interface. The results showed that that temperature of the interface remains stable in an intermediate value between the WAT (Wax Appearance Temperature) and the WDT (Wax Disappearance Temperature), since the first moments of the deposition until the deposit reaches its steady state configuration. The video camera captured original images on the deposit formation, especially on a region above the deposit where wax crystals are carried by the flow for a period of time. Only an insignificant number of carried crystals were observed to deposit over the immobile interface, or to be captured at the interface. The images also revealed that the carried crystals do not originate from crystals sloughed from upstream positions in the annular duct. The temperature probe
was also employed to measure the temperature of the liquid region above the deposit interface where the crystals existed for a period of time.
|
20 |
Nonlinear Estimation and Control with Application to Upstream ProcessesAsgharzadeh Shishavan, Reza 01 March 2015 (has links)
Subsea development and production of hydrocarbons is challenging due to remote andharsh conditions. Recent technology development with high speed communication to subsea anddownhole equipment has created a new opportunity to both monitor and control abnormal or undesirableevents with a proactive and preventative approach rather than a reactive approach. Twospecific technology developments are high speed, long-distance fiber optic sensing for productionand completion systems and wired pipe for drilling communications. Both of these communicationsystems offer unprecedented high speed and accurate sensing of equipment and processes that aresusceptible to uncontrolled well situations, leaks, issues with flow assurance, structural integrity,and platform stability, as well as other critical monitoring and control issues. The scope of thisdissertation is to design monitoring and control systems with new theoretical developments andpractical applications. For estimators, a novel `1-norm method is proposed that is less sensitiveto data with outliers, noise, and drift in recovering the true value of unmeasured parameters. Forcontrollers, a similar `1-norm strategy is used to design optimal control strategies that utilize a comprehensivedesign with multivariate control and nonlinear dynamic optimization. A framework forsolving large scale dynamic optimization problems with differential and algebraic equations is detailedfor estimation and control. A first area of application is in fiber optic sensing and automationfor subsea equipment. A post-installable fiber optic clamp is used to transmit structural informationfor a tension leg platform. A proposed controller automatically performs ballast operationsthat both stabilize the floating structure and minimize fatigue damage to the tendons that hold thestructure in place. A second area of application is with managed pressure drilling with movinghorizon estimation and nonlinear model predictive control. The purpose of this application is tomaximize rate of drilling penetration, maintain pressure in the borehole, respond to unexpected gasinflux, detect cuttings loading and pack-off, and better manage abnormal events with the drillingprocess through automation. The benefit of high speed data accessibility is quantified as well asthe potential benefit from a combined control strategy versus separate controllers.
|
Page generated in 0.0273 seconds