Spelling suggestions: "subject:"[een] FLOW CHEMISTRY"" "subject:"[enn] FLOW CHEMISTRY""
41 |
Development of a Phase Separation Strategy in Macrocyclization ReactionsBédard, Anne-Catherine 04 1900 (has links)
La réaction de macrocyclisation est une transformation fondamentale en chimie
organique de synthèse. Le principal défi associcé à la formation de macrocycles est la
compétition inhérente avec la réaction d’oligomérisation qui mène à la formation de sousproduits
indésirables. De plus, l’utilisation de conditions de dilutions élevées qui sont
nécessaires afin d’obtenir une cyclisation “sélective”, sont souvent décourageantes pour les
applications à l’échelle industrielle. Malgré cet intérêt pour les macrocycles, la recherche
visant à développer des stratégies environnementalement bénignes, qui permettent d’utiliser
des concentrations normales pour leur synthèse, sont encore rares. Cette thèse décrit le
développement d’une nouvelle approche générale visant à améliorer l’efficacité des réactions
de macrocyclisation en utilisant le contrôle des effets de dilution. Une stratégie de “séparation
de phase” qui permet de réaliser des réactions à des concentrations plus élevées a été
developpée. Elle se base sur un mélange de solvant aggrégé contrôlé par les propriétés du
poly(éthylène glycol) (PEG). Des études de tension de surface, spectroscopie UV et tagging
chimique ont été réalisées afin d’élucider le mécanisme de “séparation de phase”. Il est
proposé que celui-ci fonctionne par diffusion lente du substrat organique vers la phase ou le
catalyseur est actif. La nature du polymère co-solvant joue donc un rôle crutial dans le
contrôle de l’aggrégation et de la catalyse La stratégie de “séparation de phase” a initiallement
été étudiée en utilisant le couplage oxidatif d’alcynes de type Glaser-Hay co-catalysé par un
complexe de cuivre et de nickel puis a été transposée à la chimie en flux continu. Elle fut
ensuite appliquée à la cycloaddition d’alcynes et d’azotures catalysée par un complexe de
cuivre en “batch” ainsi qu’en flux continu. / Macrocyclization is a fundamentally important transformation in organic synthetic
chemistry. The main challenge associated with the synthesis of large ring compounds is the
competing oligomerization processes that lead to unwanted side-products. Moreover, the high
dilution conditions needed to achieved “selective” cyclization are often daunting for industrial
applications. Despite the level of interest in macrocycles, research aimed at developing
sustainable strategies that focus on catalysis at high concentrations in macrocyclization are
still rare. The following thesis describes the development of a novel approach aimed at
improving the efficiency of macrocyclization reactions through the control of dilution effects.
A “phase separation” strategy that allows for macrocyclization to be conducted at higher
concentrations was developped. It relies on an aggregated solvent mixture controlled by a
poly(ethylene glycol) (PEG) co-solvent. Insight into the mechanism of “phase separation” was
probed using surface tension measurments, UV spectroscopy and chemical tagging. It was
proposed to function by allowing slow diffusion of an organic substrate to the phase where the
catalyst is active. Consequently, the nature of the polymer co-solvent plays a role in
controlling both aggregation and catalysis. The “phase separation” strategy was initially
developed using the copper and nickel co-catalyzed Glaser-Hay oxidative coupling of terminal
alkynes in batch and was also transposed to continuous flow conditions. The “phase
separation” strategy was then applied to the copper-catalyzed alkyne-azide cycloaddition in
both batch and continuous flow.
|
42 |
Réactions d’amination de liens C-H : synthèse d’amines propargyliques à partir de N-mésyloxycarbamates et études mécanistiquesBartholoméüs, Johan 07 1900 (has links)
Les composés aminés représentent une grande part des substances actives en chimie médicinale. Les travaux rapportés dans cette thèse décrivent les efforts consacrés au développement d’une nouvelle méthode d’amination de liens C-H propargyliques. Notre groupe de recherche a développé depuis quelques années un nouveau précurseur de nitrène métallique, les N-mésyloxycarbamates, permettant d’effectuer des réactions d’amination de liaisons C-H diversement activées. Au cours du développement de notre méthodologie, la synthèse du N-mésyloxycarbamate a fait l’objet de nombreuses optimisations, notamment en améliorant l’échelle globale de la synthèse ainsi que son efficacité. De même, des efforts ont été consacrés pour diminuer le nombre d’étapes nécessaires à la synthèse du réactif en développant la synthèse d’un des intermédiaires de manière énantiosélective. Enfin, la synthèse de ce réactif a également été envisagée à l’aide de la chimie en flux continu.
Au cours du développement de la méthode de synthèse d’amines propargyliques, nous avons constaté que l’acide acétique jouait un rôle déterminant dans la conservation de bonnes sélectivités et réactivités de la réaction. Ces différentes observations ont permis de mettre au point un procédé diastéréosélectif efficace permettant d’obtenir des amines propargyliques avec des rendements allant de moyens à bons et avec d’excellentes diastéréosélectivités.
A la suite de l’étude de l’étendue de notre procédé, nous avons tenté de déterminer les mécanismes réactionnels qui régissaient la réactivité et la sélectivité de celui-ci. Nous avons ainsi montré que l’espèce réactive du système catalytique était bel et bien un nitrène métallique, et que l’étape cinétiquement déterminante était celle d’insertion. Des expériences faites en oxydant l’espèce catalytique de rhodium ont suggéré que plusieurs états d’oxydation de cette espèce peuvent être présents et actifs dans le système catalytique. / The nitrogen containing compounds represent a large portion of the active substances in medicinal chemistry. The work reported in this manuscript describe the efforts devoted to the development of a new method of amination of propargylic C-H bonds. Our research group has developed recently a new metal nitrene precursor, N-mesyloxycarbamates, to perform amination reactions on various C-H bonds. During the development of our methodology, the synthesis of N-mesyloxycarbamate has undergone many improvements, including improved global scale synthesis and effectiveness. Similarly, efforts were devoted to reduce the number of steps required for the synthesis of the reagent by developing the synthesis of an intermediate enantioselectively. Finally, the synthesis of this reagent was also considered using continuous flow chemistry.
During development of the method of synthesis of propargylic amines, we have found that acetic acid plays a key role in the conservation of good selectivity and reactivity of the reaction. These observations allowed to develop an efficient diastereoselective process in order to obtain propargylic amines with moderate to good yields and with excellent diastereoselectivities.
Following the study of the scope of our process, we tried to determine the reaction mechanisms governing the reactivity and selectivity. We have shown that the reactive species of the catalyst system was indeed a metal nitrene, and that the rate-determining step was the insertion. Experiments made by oxidizing the rhodium catalytic species suggested that several oxidation states of this species may be present and active in the catalytic system.
|
Page generated in 0.0438 seconds