Spelling suggestions: "subject:"[een] FLUID FLOW"" "subject:"[enn] FLUID FLOW""
41 |
Flow in a shrouded rotor-stator cavity with pre-swirl coolantEl-Oun, Z. B. January 1986 (has links)
No description available.
|
42 |
Flourescent molecular rotors as mechanosensors in biofluidsAkers, Walter John, January 2005 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2005. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on October 19, 2007) Vita. Includes bibliographical references.
|
43 |
Fault rock evolution and fluid flow in sedimentary basinsHippler, Susan Johanna January 1989 (has links)
Structural studies have been undertaken in two extensional fault regimes associated with post-Caledonian basin-forming events in northern Scotland. A combination of detailed mapping and microstructural analysis has revealed the deformation processes and mechanisms involved in fault rock evolution and fluid flow associated with extensional faulting in upper crustal conditions. Intrabasinal fault rock evolution has been investigated in the Orcadian Basin, NE Scotland, which developed in Old Red Sandstone (ORS) times, soon after cessation of the Caledonian Orogeny. High pore fluid pressures developed in lower Middle ORS lacustrine facies sediments as a result of overpressuring due to rapid subsidence in the early stages of basin evolution. This facilitated gravity-driven movement of sediments in the hangingwalls of tilted half-grabens, resulting in the development of bedding parallel detachment horizons. These horizons contain shear sense indicators showing displacement to the W-WNW, whilst normal faults which detach onto these horizons show NW-SE extension directions. Microstructures indicate that displacement within the bedding parallel detachment horizons was accommodated by independent particulate flow processes in weakly lithified sediments. The Scapa Fault System was active in upper Middle ORS to Upper ORS times during deposition of the fluvial Scapa Sandstone. Microstructures in the Scapa Sandstone in the hangingwall of the North Scapa Fault indicate that this early faulting led to extreme grain size reduction by a combination of grain boundary and transgranular fracture processes. The cataclasis, together with subsequent precipitation of illite cement up to one metre from the fault plane resulted in the sealing of the fault early in the diagenetic history of the sediment. Subsequent uplift of the Orcadian Basin, most probably during Carboniferous times, resulted in a range of inversion geometries. In the lower Middle ORS lacustrine facies rocks, thrusts exploited the bedding parallel detachment horizons, and folds and reverse faults developed as a result of buttressing against the earlier normal faults. The presence of vein arrays associated with these later reverse faults suggests the existence of high pore fluid pressures. Bitumen in these veins indicates the mobility of hydrocarbons at the time of deformation. The North Scapa Fault was reactivated in a sinistral, oblique-slip sense during the inversion event. Fracture arrays and narrow cataclastic zones outside the previously developed sealed domain provided pathways for the migration of mature hydrocarbons. The East Scapa Fault reactivated in a reverse sense, and also contains fault rocks which record the presence of hydrocarbons at this time. Permo-Carboniferous dykes on Orkney are deformed during later dextral movements on the Great Glen fault system, which further reactivated the East Scapa Fault in a (dextral) transtensional sense. The development of fault rocks along the East Scapa Fault at this time is complex and heterogeneous, and is dependent on fault geometry and kinematics. Basin-margin faults exposed on the NW Scottish Mainland are most probably related to extension during evolution of the Minch Basin to the west of Scotland. The steeply-dipping extensional faults cut through Caledonian thrust sheets in Sango Bay, Durness. The resulting cataclastic deformation in a quartzite with an originally mylonitic microstructure has allowed assessment of the influence of initial microstructure on the cataclastic grain size reduction processes. The evolution of the fault rocks in terms of clast size, and clast/matrix ratios is not a simple function of displacement magnitude on the faults. Detalied microstructural investigation in the quartzite thrust sheet reveals a range of cataclastic fault rocks, from clast dominated microbreccias to matrix dominated ultracataclasites. The recrystallised grain size and the sub-grain size in the original mylonite appear to control the development of the fine-grained matrix in the microbreccias and cataclasites by locating fracture along grain and sub-grain boundaries. Further grain size reduction generating the ultracataclasites and the finer-grained matrix zones in the microbreccias is dominated by transgranular fracturing. The host rock clasts present in the fault zones in the quartzite show a significant increase in dislocation density indicating that a component of low temperature crystal plasticity is associated with the faulting. In addition, the fault rocks show evidence of partial cementation by the growth of quartz and carbonate cements. This emphasises the importance of fluids during healing of the fault zone.
|
44 |
Computation of flows by the finite volume method as applied to unstructured meshesChan, Chun Tat January 1997 (has links)
No description available.
|
45 |
Particle image velocimetry : data reduction using optical correlationCoupland, Jeremy January 1990 (has links)
No description available.
|
46 |
The characterisation of fluid transport in heterogeneous porous media using nuclear magnetic resonanceBolam, Andrew Christopher January 1998 (has links)
No description available.
|
47 |
Enhancement of heat transfer in smooth annular ducts using longitudinal fins or swirling flowEdwards, R. J. January 1987 (has links)
No description available.
|
48 |
Bifurcation in physical systemsTaverner, S. January 1986 (has links)
No description available.
|
49 |
The Effects of a Navier-Slip Boundary Condition on the Flow of Two Immiscible Fluids in a MicrochannelFisher, Charles Edward 25 April 2013 (has links)
We consider the flow of two immiscible fluids in a thin inclined channel subject to gravity and a change in pressure. In particular, we focus on the effects of Navier slip along the channel walls on the long-wave linear stability. Of interest are two different physical scenarios. The first corresponds to two incompressible fluid layers separated by a sharp interface, while the second focuses on a more dense fluid below a compressible gas. From a lubrication analysis, we find in the first scenario that the system is stable in the zero-Reynolds number limit with the slip effects modifying the decay rate of the stable perturbation. In the case of the Rayeligh-Taylor problem, slip along the less dense fluid wall has a destabilizing effect. In the second scenario, fluid inertia is pertinent, and we find neutral stability criteria are not significantly affected with the presence of slip.
|
50 |
Quantifying the role of microporosity in fluid flow within carbonate reservoirsHarland, Sophie Rebekah January 2016 (has links)
Micropores can constitute up to 100% of the total porosity within carbonate hosted hydrocarbon reservoirs, usually existing within micritic fabrics. There is, however, only a rudimentary understanding of the contribution that these pores make to reservoir performance and hydrocarbon recovery. To further our understanding, a flexible, object-based algorithm has been developed to produce 3D computational representations of end-point micritic fabrics. By methodically altering model parameters, the state-space of microporous carbonates is explored. Flow properties are quantified using lattice-Boltzmann and network modelling methods. In purely micritic fabrics, it has been observed that average pore radius has a positive correlation with single-phase permeability and results in decreasing residual oil saturations under both water-wet and 50% fractionally oil-wet states. Similarly, permeability increases by an order of magnitude (from 0.6md to 7.5md) within fabrics of varying total matrix porosity (from 18% to 35%) due to increasing pore size, but this has minimal effect on multi-phase flow. Increased pore size due to micrite rounding notably increases permeability in comparison to original rhombic fabrics with the same porosity, but again, multi-phase flow properties are unaffected. The wetting state of these fabrics, however, can strongly influence multi-phase flow; residual oil saturations vary from 30% for a water-wet state and up to 50% for an 80% oil wet fraction. flow when directly connected. Otherwise, micropores control single-phase permeability magnitude. Importantly in these fabrics, recovery is dependent on both wetting scenario and pore-network homogeneity; under water-wet imbibition, increasing proportions of microporosity yield lower residual oil saturations. Finally, in grain-based fabrics where mesopores form an independently connected pore network, micropores do not affect permeability, even when they constitute up to 50% of the total porosity. Through examination of these three styles of microporous carbonates, it is apparent that micropores can have a significant impact on flow and sweep characteristics in such fabrics.
|
Page generated in 0.0287 seconds