• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 193
  • 69
  • 61
  • 36
  • 10
  • 9
  • 6
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 463
  • 463
  • 106
  • 92
  • 78
  • 73
  • 62
  • 59
  • 55
  • 51
  • 45
  • 43
  • 43
  • 37
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The characterization and separation of electric arc steelmaking furnace flue dust

Stewart, Timothy Glen 05 1900 (has links)
No description available.
22

Shrinkage behaviour of geopolymer

Zheng,Yong Chu January 2009 (has links)
Geopolymer cements offer an alternative to, and potential replacement for, ordinary Portland cement (OPC). Geopolymer technology also has the potential to reduce global greenhouse emissions caused by OPC production. There is already a considerable amount of work and research conducted on geopolymers in the past decades, and it is now possible to implement this technology commercially. However, to ensure that geopolymer becomes commercially available and able to be used in the world, further understanding of its ability to provide durable and long lasting materials is required. One main property which is still relatively unexplored compared to other properties is its shrinkage properties. The objective of this thesis is therefore to examine the shrinkage of geopolymers and factors which might influence it. / The factors which influence geopolymer strength were investigated as being the factors which may influence shrinkage. The selection of the activating solution is an important factor in forming the final product of a geopolymer. Activating solution SiO2/Na2O ratio is determined to be an important influence on the shrinkage of geopolymer. SEM images of the samples enable observation of the sample topology and microstructure. An important observation was the existence of a ‘knee point’ which also occurs in OPC shrinkage. The ‘knee point’ is the point where the shrinkage goes from rapid shrinkage to slow shrinkage. From SEMs it is noted that the samples past the knee point are shown to have a smoother topology which means it is more reacted. / Autogenous shrinkage is an important issue for OPC containing a high amount of silica, and is also a key factor in geopolymer shrinkage. Autogenous shrinkage is tested by keeping samples in a sealed environment where water lost to drying is kept to a minimum. It is noted that sealing and bagging the samples reduces the shrinkage considerably. The water to cement ratio, which is an important factor in OPC shrinkage, is also explored for the case of geopolymers. Water content plays an important role in determining early stage shrinkage, and has little to no effect on the later stage shrinkage. The water loss from the samples during drying on exposure to environment is noted and compared. The addition of more water did not necessary means that more water was lost. / Addition of slag is known to be beneficial to geopolymers by giving early structural strength and faster setting time. Commercial geopolymer concrete will also include the use of slag. However, the addition of slag up to a certain extent gives a deleterious affect on shrinkage. / A different type of Class F fly ash source with different composition data was used to see its effect on shrinkage, with only a slight influence observed between the two ashes tested. Fly ash was also ground for different lengths of time before use in geopolymerization, with grinding for less than 12 hours giving higher shrinkage than an unground sample, but shrinkage the decreasing with grinding for 18 or 24 hours. This initial higher shrinkage has been attributed to the mechanism of grinding which resulted in unevenly shaped fly ash particles taking up a larger initial volume resulting in higher shrinkage. The sample grinded for 24 hours showed higher shrinkage due to the particle size to be so fine that agglomerates may have form during mixing which would result in a lower reaction rate which increases the shrinkage. Elevated curing temperatures also reduce geopolymer shrinkage. / Thus, it is clear that the shrinkage of geopolymers is influenced by a wide range of variables, and more notably by a few important variables: activating solution ratio, addition of water, grinding and bagging. The shrinkage of geopolymers can be correlated to the strength to a certain extent. However, the understanding of the shrinkage of geopolymers is still at a very initial phase, and further research is required.
23

Fine ash morphology and aerosol formation : a comparison of coal and biomass fuels /

Chenevert, Blake Charles. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaves [240]-247).
24

Aspects of solid-state chemistry of fly ash and ultramarine pigments

Landman, Andreas Adriaan. January 2004 (has links)
Thesis (Ph. D.)(Chemistry)--University of Pretoria, 2004. / Title from opening screen (viewed Oct. 8, 2004). Includes bibliographical references.
25

A new porous material based on cenospheres

Biju-Duval, Paul M.. January 2007 (has links)
Thesis (M. S.)--Civil and Environmental Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Dr. Mulalo Doyoyo; Committee Member: Dr. Arash Yavari; Committee Member: Dr. Kenneth M. Will. Part of the SMARTech Electronic Thesis and Dissertation Collection.
26

The durability of concrete containing high levels of fly ash

Burden, Donald. January 2006 (has links)
Thesis (M.A.)--University of New Brunswick, 2003. / Copyright (2003) held by author. Includes bibliographical references (p. 97-100).
27

The effects of fly ash on the ability to entrain and stabilize air in concrete

Ley, Matthew Tyler, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
28

Fly Ash Zeolite Catalyst Support for Fischer-Tropsch Synthesis

Campen, Adam 01 December 2012 (has links)
This dissertation research aimed at evaluating a fly ash zeolite (FAZ) catalyst support for use in heterogeneous catalytic processes. Gas phase Fischer-Tropsch Synthesis (FTS) over a fixed-bed of the prepared catalyst/FAZ support was identified as an appropriate process for evaluation, by comparison with commercial catalyst supports (silica, alumina, and 13X). Fly ash, obtained from the Wabash River Generating Station, was first characterized using XRD, SEM/EDS, particle size, and nitrogen sorption techniques. Then, a parametric study of a two-step alkali fusion/hydrothermal treatment process for converting fly ash to zeolite frameworks was performed by varying the alkali fusion agent, agent:flyash ratio, fusion temperature, fused ash/water solution, aging time, and crystallization time. The optimal conditions for each were determined to be NaOH, 1.4 g NaOH: 1 g fly ash, 550 °C, 200 g/L, 12 hours, and 48 hours. This robust process was applied to the fly ash to obtain a faujasitic zeolite structure with increased crystallinity (40 %) and surface area (434 m2/g). Following the modification of fly ash to FAZ, ion exchange of H+ for Na+ and cobalt incipient wetness impregnation were used to prepare a FTS catalyst. FTS was performed on the catalysts at 250 - 300 °C, 300 psi, and with a syngas ratio H2:CO = 2. The HFAZ catalyst support loaded with 11 wt% cobalt resulted in a 75 % carbon selectivity for C5 - C18 hydrocarbons, while methane and carbon dioxide were limited to 13 and 1 %, respectively. Catalyst characterization was performed by XRD, N2 sorption, TPR, and oxygen pulse titration to provide insight to the behavior of each catalyst. Overall, the HFAZ compared well with silica and 13X supports, and far exceeded the performance of the alumina support under the tested conditions. The successful completion of this research could add value to an underutilized waste product of coal combustion, in the form of catalyst supports in heterogeneous catalytic processes.
29

Soil Stabilization with Fly Ash and Fibers

Mu, Tianhong 01 December 2013 (has links)
In this study, coal combustion by-products mainly fly ash, commercial fibers and a natural fiber i.e., human hair were applied to stabilize the kaolinite clay and local Carbondale soil i.e., silty clay. During recent decades, the demand for infrastructures such as highways, buildings, bridges have greatly increased, especially in the areas where population was growing rapidly. All of these infrastructures need a stable foundation and in many cases the original land couldn't sustain the load from the infrastructures. In such situation, soil stabilization becomes an essential step before the foundation is laid. There are several ways to stabilize soil, viz., mechanical stabilization, chemical stabilization, stabilization by inclusion and confinement etc. It has been reported by several researchers that fly ash and fibers can significantly improve the strength of soil. Fly ash and natural fiber i.e., human hair are both waste materials, and commercial fibers are low-cost compared to other soil stabilizers. In this study, class C fly ash was used to stabilize commercially available clay i.e., Kaolinite; while both human hair and commercially available fibers (e.g., glass fiber and plastic fiber) were used to stabilize Kaolinite and Carbondale local soil. Based on this research, it could be concluded that the class C fly ash can improve the Unconfined Compressive Strength (UCS) value of Kaolinite clay significantly; fibers also could increase the UCS value of both Kaolinite and Carbondale local soil. While, the tensile strength of Kaolinite and Carbondale local soil sometimes increases or decreases depending on the percentages of fiber content used into Kaolinite and Carbondale local soil. The current research on soil stabilization by fly ash and those fibers may provide a new possibility for soil stabilization.
30

Durability of Incinerator Fly Ash Concrete

Yousef Shebani, A. January 2015 (has links)
The main theme of this research was to investigate the durability of concrete made using waste materials as a cement replacement. This is a method to produce green sustainable concrete. The objective was to use locally available wastes to produce a concrete that could be used by the local authority. The mechanical, physical and chemical properties of concrete made predominantly with IFA as a partial cement replacement have been tested. The IFA was won locally from the domestic waste incinerator at Coventry, UK. The other materials used in the mixes included Ground Granulated Blast Furnace Slag (GGBS), silica fume and by-pass dust, which was used as an activator and was also won locally from the Rugby cement plant. Compressive strength and tensile strength, workability, corrosion of embedded steel, shrinkage and expansion, freeze and thaw, corrosion and chloride ingress were studied. Water permeability was studied by the author on mortar samples during one year and on concrete samples during the following. Carbonation was studied on concrete samples and finally mechanical experiments were carried out on concrete beams and slabs. Two further experiments were carried out to complete the study of durability of concrete made with waste materials being, the ASR (Alkaline Silica Reaction) and sulphate attack experiments. One main physical experiment, in the form of a trial mix, was carried out in one of the waste recycling sites of Warwickshire in September 2013. Subsequent to observations during the site trial, the author compared results of setting time, heat of hydration and strength of the trial mix and control mixes. The outcome of this research was a novel mix that had more than 30 percent waste material and a further 40 percent of secondary materials, making it as sustainable as possible. Both laboratory and site trial results have achieved compressive strength which are higher than 30 MPa, indicating that the novel mix concrete could be used for structural purposes. Most of the durability results of the novel mix were comparable with the control OPC mix and the novel mix concrete, in terms of transport properties, induced less electrical current seepage. Furthermore the tensile strength of the novel mix concrete was higher than the control OPC concrete and this is due to the higher ductility index of the novel mix.

Page generated in 0.0553 seconds