• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 47
  • 20
  • 18
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 269
  • 58
  • 48
  • 38
  • 28
  • 26
  • 25
  • 21
  • 21
  • 21
  • 20
  • 20
  • 19
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Regulatory Elements, Protein Function and Evolution of the Actinodin Genes

Moses, Daniel 03 October 2013 (has links)
Small fibrils termed actinotrichia are involved with the growth and structure of the fin fold during fin development in fish. The actinodin (and) genes are required for actinotrichia formation, and the loss of these genes from the genomes of tetrapods has been implicated in the tetrapod-specific loss of actinotrichia, loss of a fin fold and the concurrent evolution of paired fins into limbs. This study focuses on the function of the and genes and their role in actinotrichia formation. The results reveal cis-acting regulatory elements required for and1 expression in the fin epithelium. Furthermore, it is shown that the And proteins display similarities to the secreted signaling molecule, Ecrg4, implying a possible role in cell differentiation during fin fold development. In the final section of this report, I use a genomic analysis to show that the and genes were lost from otherwise well-conserved syntenic loci in fish and tetrapod genomes. These results suggest possible causes for the evolutionary loss of and genes and the associated developmental changes that may have permitted fin to limb evolution.
42

The Evolution of Deep-Water Salt-Tectonic Structures, Numerical Modeling Studies applied to the Northwestern Gulf of Mexico

Gradmann, Sofie 11 September 2012 (has links)
Salt tectonics is a key player in the evolution of many worldwide sedimentary basins on rifted continental margins. For more than a century, the evolving structures have been studied; but focus remained primarily on the onshore and shallow-water regions. The evolution of the poorly studied deep-water salt-tectonic structures is the focus of this thesis. Investigations are performed using 2D numerical models that comprise a viscous salt layer overlain by a frictional-plastic passive margin sedimentary sequence from shelf to deep water. This thesis addresses multiple salt-tectonic processes (gravity spreading, evolution of fold belts and salt canopies, diapirism) in a general context but with special focus on the structural evolution of the northwestern Gulf of Mexico (GoM). Here, multiple phases of gravity-spreading induced salt mobilization and thin-skinned deformation occurred throughout the Cenozoic. During the latest, late Oligocene-Miocene phase, the Perdido Fold Belt (PFB) formed from a 4.5km thick pre-kinematic section as a prominent salt-cored deep-water structure above the pinch-out of the autochthonous salt. It is here demonstrated with analytical as well as numerical calculations that the folding of the PFB can have formed by gravity spreading alone without basement tectonics. A requirement for this deformation is very high pore-fluid pressure in the sediments, which effectively reduces the sediments' mechanical strength. These values are refined using numerical models that couple compaction-induced fluid pressure to mechanical deformation. It is shown that very high fluid pressure is only necessary at the landward base of the deforming system; fluid pressure in other regions may remain moderate. This study shows, for the first time, the regional and dynamic evolution of pore-fluid pressure in a continental margin sedimentary system above salt. Additionally, the contribution of `lateral compaction' during fold-belt evolution is addressed. Landward of the PFB, a large-scale canopy developed during the Eocene. Its evolution is studied by investigating three different concepts of canopy evolution that have been proposed in the scientific literature. A canopy evolving via the mechanism of squeezed diapirs is most similar to the Eocene canopy of the northwestern GoM. A canopy evolving via the mechanism of breached anticlines is similar to that observed above the landward end of the PFB. Dynamic diapir growth is addressed in a neutral stress regime under uneven sedimentation employing a new mechanism of diapir initiation and evolution.
43

Packing: An Architect's Guide

Lacalamita, Andrea 15 July 2011 (has links)
A study of packing constructs a critique of the everyday: a dialogue between chaos and order, surface and area, interior and exterior, gravity and lightness. In search of tangible expression of the spatial processes I am responsible for, I have become both master architect and expert packer. I have composed this thesis the same way I pack: I have assembled piles of fragments, regrouped them, reconsidered, edited, alloted them more or less space. Things have become more and less valuable. Quotes and images are precious, like artifacts, tucked delicately between text-filled pages. Each word I write, each line I draw, creates a boundary, a parcel, a unit of space set apart from the white of the page. This book is my suitcase.
44

Changing to meet the need the Baby Fold and its evolving ministry to central Illinois /

Logsdon, Thomas R. Holsinger, M. Paul, January 1999 (has links)
Thesis (D.A.)--Illinois State University, 1999. / Title from title page screen, viewed July 24, 2006. Dissertation Committee: M. Paul Holsinger (chair), L. Moody Simms, Lawrence W. McBride. Includes bibliographical references (leaves 182-198) and abstract. Also available in print.
45

Structural studies on the enzymatic units of the peroxisomal multifunctional enzyme type 2 (MFE-2)

Koski, K. (Kristian) 26 October 2004 (has links)
Abstract Multifunctional enzyme type 2 (MFE-2) is a peroxisomal enzyme participating in the breakdown of fatty acids in eukaryotes. Depending on the organism, MFE-2 is composed of two to four functional units, out of which the two enzymatic ones, 2-enoyl-coenzyme A (CoA) hydratase 2 and (3R)-hydroxyacyl-CoA dehydrogenase, are found in the all MFE-2s. These units are responsible for the catalysis of the second and third steps of the peroxisomal β-oxidation of various CoA thioesters of fatty acids and fatty acyl derivatives. Their (R)-stereospecificity and ability to accept a broad range of fatty acid CoA esters as substrates, in addition to the fact that they do not share any sequence similarity with the classical mitochondrial counterparts, make the enzymatic units of MFE-2 structurally very interesting. In this study, the three-dimensional structures of the (3R)-hydroxyacyl-CoA dehydrogenase and 2-enoyl-CoA hydratase 2 units were solved by crystallographic methods. The crystal structure of the (3R)-hydroxyacyl-CoA dehydrogenase unit of rat MFE-2 reveals a dimeric enzyme with an α/β short-chain alcohol dehydrogenase/reductase (SDR) fold. A unique feature of (3R)-hydroxyacyl-CoA dehydrogenase, however, is the separate C-terminal domain, which completes the active site cavity of the adjacent monomer and extends the dimeric interactions. The 2-enoyl-CoA hydratase 2 unit is a dimer with a unique two-domain structure proposed to evolve via gene duplication. The fold consists of two side-by-side arranged repeats of the hot-dog fold motifs, thus being highly reminiscent of the tertiary structures of the (R)-specific 2-enoyl-CoA hydratase of the polyhydroxyalkanoate synthesis pathway and the β-hydroxydecanoyl thiol ester dehydrase of fatty acid synthesis type II, both from prokaryotic sources. The importance of the N-domain in the binding of bulky substrates was shown by the enzyme-product complex structure, which also indicates the active site. For the first time, it was shown that the eukaryotic hydratase 2 uses an Asp/His catalytic dyad in catalysis. Moreover, a novel catalytic mechanism was proposed for (R)-specific hydration/dehydration. The solved structures also provide a molecular basis for understanding the effects of the patient mutations of MFE-2. They also allow disussion of the possible organisation of the three units in full-length MFE-2 of mammals.
46

Regulatory Elements, Protein Function and Evolution of the Actinodin Genes

Moses, Daniel January 2013 (has links)
Small fibrils termed actinotrichia are involved with the growth and structure of the fin fold during fin development in fish. The actinodin (and) genes are required for actinotrichia formation, and the loss of these genes from the genomes of tetrapods has been implicated in the tetrapod-specific loss of actinotrichia, loss of a fin fold and the concurrent evolution of paired fins into limbs. This study focuses on the function of the and genes and their role in actinotrichia formation. The results reveal cis-acting regulatory elements required for and1 expression in the fin epithelium. Furthermore, it is shown that the And proteins display similarities to the secreted signaling molecule, Ecrg4, implying a possible role in cell differentiation during fin fold development. In the final section of this report, I use a genomic analysis to show that the and genes were lost from otherwise well-conserved syntenic loci in fish and tetrapod genomes. These results suggest possible causes for the evolutionary loss of and genes and the associated developmental changes that may have permitted fin to limb evolution.
47

Analysis of the structural geology of the high-grade metamorphic rocks in part of the Kakamas terrane of an area adjacent to the Neusspruit shear zone South of the orange river, Northern Cape, South Africa

Sonwa, Cyrille Stephane Tsakou January 2021 (has links)
>Magister Scientiae - MSc / The Proterozoic Namaqua-Natal Province comprises highly deformed rocks of medium to high grade metamorphism and is bordering the Archean Kaapvaal Craton to the west, south and east in South Africa. The sector to the west of the Craton, namely the Namaqua Sector, is structurally complex and subdivided from west to east into the Bushmanland Subprovince, the Kakamas and Areachap terranes of the Gordonia Subprovince and the Kheis Subprovince. The prominent Neusberg Mountain Range, with exposures to the north and south of the Orange River in the Kakamas Terrane constitutes evidence of crustal shortening as a result of continental collision of the Namaqua Sector block with the Kaapvaal Craton during the Namaquan Orogeny. The Mesoproterozoic Korannaland Group in the Kakamas Terrane is affected by faulting, folding and shearing.
48

Effect of the Regulation of Oxidative Stress on Vocal Fold Wound Healing/ Expression of reactive oxygen species during wound healing of vocal folds in a rat model / 酸化ストレスの制御が声帯創傷治癒に及ぼす効果

Mizuta, Masanobu 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18851号 / 医博第3962号 / 新制||医||1007(附属図書館) / 31802 / 京都大学大学院医学研究科医学専攻 / (主査)教授 別所 和久, 教授 鈴木 茂彦, 教授 瀬原 淳子 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
49

PPARγ Agonist Attenuates Vocal Fold Fibrosis in Rats via Regulation of Macrophage Activation / PPARγアゴニストはマクロファージ活性を調節することでラットの声帯線維化を軽減する

Kaba, Shinji 25 July 2022 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24137号 / 医博第4877号 / 新制||医||1060(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 上野 英樹, 教授 森本 尚樹, 教授 寺田 智祐 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
50

Refinement and Characterization of Synthetic Vocal Fold Models

Ward, Shelby Charisse 11 July 2014 (has links) (PDF)
Understanding vocal fold mechanics is an integral part of voice research and synthetic vocal fold models are an essential tool in characterizing vocal fold mechanics. These models contain multiple layers with varying stiffness, much like human vocal folds. The purpose of this thesis is to improve the current models and modeling techniques, as well as investigate the impact of asymmetry on model vibration. A new design for an MRI-based model is detailed. This model has a more realistic geometry than the simplified models and mimics some of the vibratory characteristics observed in human vocal folds. The MRI-based model was used to investigate left-right stiffness asymmetry in multiple layers of the model. A zipper-like motion was observed during vibration of the MRI-based models. A phase shift was present in the asymmetric models, with the less stiff side leading the stiffer side. A new expendable mold fabrication process is described. This new process provides more freedom in designing vocal fold models and experiments. Additionally, the new process enables fabrication of models without the use of release agent, a factor which has, in the past, adversely impacted manufacturing yield and prohibited the incorporation of certain biological materials into the synthetic models. The new process also allows for more convenient geometry variation than what has previously been feasible. Finally, the new process was used to investigate cover layer geometry variation and asymmetry in a simplified model. Cover layer thickness was found to be a significant factor in governing the motion of the vocal fold model. Anterior-posterior asymmetry was found to induce the same zipper-like motion observed in the MRI-based models.

Page generated in 0.045 seconds