• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 156
  • 37
  • 33
  • 11
  • 8
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 299
  • 299
  • 88
  • 83
  • 78
  • 74
  • 71
  • 70
  • 70
  • 60
  • 59
  • 37
  • 36
  • 32
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Scaling SAT-based Automated Design Debugging with Formal Methods

Keng, Brian 12 February 2010 (has links)
The size and complexity of modern VLSI computer chips are growing at a rapid pace. Functional debugging is increasingly becoming a bottleneck in the design flow where it can take up to 60% of the total verification time. Scaling existing automated debugging tools is necessary in order to continue along this path of rapid growth and innovation in the semiconductor industry. This thesis aims to scale automated debugging techniques with two contributions. The first contribution introduces a succinct memory model for automated design debugging that dramatically lowers the memory requirements for the debugging problem. The second contribution presents a scalable SAT-based design debugging algorithm that uses a mathematical technique called interpolation to divide the debugging problem into multiple parts across time which greatly reduces the peak memory requirements of the debugging problem. Extensive experiments on real designs demonstrate the benefit of this work.
42

Temporal Logic Motion Planning in Partially Unknown Environments

Maly, Matthew 16 September 2013 (has links)
This thesis considers the problem of a robot with complex dynamics navigating a partially discovered environment to satisfy a temporal logic formula consisting of both a co-safety formula component and a safety formula component. We employ a multi-layered synergistic framework for planning motions to satisfy a temporal logic formula, and we combine with it an iterative replanning strategy to locally patch the robot's discretized internal representation of the workspace whenever a new obstacle is discovered. Furthermore, we introduce a notion of ``closeness'' of satisfaction of a linear temporal logic formula, defined by a metric over the states of the corresponding automaton. We employ this measure to maximize partial satisfaction of the co-safety component of the temporal logic formula when obstacles render it unsatisfiable. For the safety component of the specification, we do not allow partial satisfaction. This introduces a general division between ``soft'' and ``hard'' constraints in the temporal logic specification, a concept we illustrate in our discussion of future work. The novel contributions of this thesis include (1) the iterative replanning strategy, (2) the support for safety formulas in the temporal logic specification, (3) the method to locally patch the discretized workspace representation, and (4) support for partial satisfaction of unsatisfiable co-safety formulas. As our experimental results show, these methods allow us to quickly compute motion plans for robots with complex dynamics to satisfy rich temporal logic formulas in partially unknown environments.
43

Theory and techniques for synthesizing efficient breadth-first search algorithms

Nedunuri, Srinivas 05 October 2012 (has links)
The development of efficient algorithms to solve a wide variety of combinatorial and planning problems is a significant achievement in computer science. Traditionally each algorithm is developed individually, based on flashes of insight or experience, and then (optionally) verified for correctness. While computer science has formalized the analysis and verification of algorithms, the process of algorithm development remains largely ad-hoc. The ad-hoc nature of algorithm development is especially limiting when developing algorithms for a family of related problems. Guided program synthesis is an existing methodology for systematic development of algorithms. Specific algorithms are viewed as instances of very general algorithm schemas. For example, the Global Search schema generalizes traditional branch-and-bound search, and includes both depth-first and breadth-first strategies. Algorithm development involves systematic specialization of the algorithm schema based on problem-specific constraints to create efficient algorithms that are correct by construction, obviating the need for a separate verification step. Guided program synthesis has been applied to a wide range of algorithms, but there is still no systematic process for the synthesis of large search programs such as AI planners. Our first contribution is the specialization of Global Search to a class we call Efficient Breadth-First Search (EBFS), by incorporating dominance relations to constrain the size of the frontier of the search to be polynomially bounded. Dominance relations allow two search spaces to be compared to determine whether one dominates the other, thus allowing the dominated space to be eliminated from the search. We further show that EBFS is an effective characterization of greedy algorithms, when the breadth bound is set to one. Surprisingly, the resulting characterization is more general than the well-known characterization of greedy algorithms, namely the Greedy Algorithm parametrized over algebraic structures called greedoids. Our second contribution is a methodology for systematically deriving dominance relations, not just for individual problems but for families of related problems. The techniques are illustrated on numerous well-known problems. Combining this with the program schema for EBFS results in efficient greedy algorithms. Our third contribution is application of the theory and methodology to the practical problem of synthesizing fast planners. Nearly all the state-of-the-art planners in the planning literature are heuristic domain-independent planners. They generally do not scale well and their space requirements also become quite prohibitive. Planners such as TLPlan that incorporate domain-specific information in the form of control rules are orders of magnitude faster. However, devising the control rules is labor-intensive task and requires domain expertise and insight. The correctness of the rules is also not guaranteed. We introduce a method by which domain-specific dominance relations can be systematically derived, which can then be turned into control rules, and demonstrate the method on a planning problem (Logistics). / text
44

Efficient, mechanically-verified validation of satisfiability solvers

Wetzler, Nathan David 04 September 2015 (has links)
Satisfiability (SAT) solvers are commonly used for a variety of applications, including hardware verification, software verification, theorem proving, debugging, and hard combinatorial problems. These applications rely on the efficiency and correctness of SAT solvers. When a problem is determined to be unsatisfiable, how can one be confident that a SAT solver has fully exhausted the search space? Traditionally, unsatisfiability results have been expressed using resolution or clausal proof systems. Resolution-based proofs contain perfect reconstruction information, but these proofs are extremely large and difficult to emit from a solver. Clausal proofs rely on rediscovery of inferences using a limited number of techniques, which typically takes several orders of magnitude longer than the solving time. Moreover, neither of these proof systems has been able to express contemporary solving techniques such as bounded variable addition. This combination of issues has left SAT solver authors unmotivated to produce proofs of unsatisfiability. The work from this dissertation focuses on validating satisfiability solver output in the unsatisfiability case. We developed a new clausal proof format called DRAT that facilitates compact proofs that are easier to emit and capable of expressing all contemporary solving and preprocessing techniques. Furthermore, we implemented a validation utility called DRAT-trim that is able to validate proofs in a time similar to that of the discovery time. The DRAT format has seen widespread adoption in the SAT community and the DRAT-trim utility was used to validate the results of the 2014 SAT Competition. DRAT-trim uses many advanced techniques to realize its performance gains, so why should the results of DRAT-trim be trusted? Mechanical verification enables users to model programs and algorithms and then prove their correctness with a proof assistant, such as ACL2. We designed a new modeling technique for ACL2 that combines efficient model execution with an agile and convenient theory. Finally, we used this new technique to construct a fast, mechanically-verified validation tool for proofs of unsatisfiability. This research allows SAT solver authors and users to have greater confidence in their results and applications by ensuring the validity of unsatisfiability results. / text
45

Efficient and effective symbolic model checking

Iyer, Subramanian Krishnan 28 August 2008 (has links)
Not available / text
46

Combining advanced formal hardware verification techniques

Reeber, Erik Henry, 1978- 29 August 2008 (has links)
This dissertation combines formal verification techniques in an attempt to reduce the human effort required to verify large systems formally. One method to reduce the human effort required by formal verification is to modify general-purpose theorem proving techniques to increase the number of lemma instances considered automatically. Such a modification to the forward chaining proof technique within the ACL2 theorem prover is described. This dissertation identifies a decidable subclass of the ACL2 logic, the Subclass of Unrollable List Formulas in ACL2 (SUFLA). SUFLA is shown to be decidable, i.e., there exists an algorithm that decides whether any SUFLA formula is valid. Theorems from first-order logic can be proven through a methodology that combines interactive theorem proving with a fully-automated solver for SUFLA formulas. This methodology has been applied to the verification of components of the TRIPS processor, a prototype processor designed and fabricated by the University of Texas and IBM. Also, a fully-automated procedure for the Satisfiability Modulo Theory (SMT) of bit vectors is implemented by combining a solver for SUFLA formulas with the ACL2 theorem prover's general-purpose rewriting proof technique. A new methodology for combining theorem proving and model checking is presented, which uses a unique "black-box" formalization of hardware designs. This methodology has been used to combine the ACL2 theorem prover with IBM's SixthSense model checker and applied to the verification of a high-performance industrial multiplier design. A general-purpose mechanism has been created for adding external tools to a general-purpose theorem prover. This mechanism, implemented in the ACL2 theorem prover, is capable of supporting the combination of ACL2 with both SixthSense and the SAT-based SUFLA solver. A new hardware description language, DE2, is described. DE2 has a number of unique features geared towards simplifying formal verification, including a relatively simple formal semantics, support for the description of circuit generators, and support for embedding non-functional constructs within a hardware design. The composition of these techniques extend our knowledge of the languages and logics needed for formal verification and should reduce the human effort required to verify large hardware circuit models.
47

Behavioral Verification of Small Networks of State-Machines Built with Arduino-like Processors

Delfani, Parisa Unknown Date
No description available.
48

Z formaliuju metodu panaudojimas informaciniu sistemu projektavime / The use of Z for informational systems design

Paulauskaitė, Agnė 20 May 2005 (has links)
Summary Still today informal methods are the most common for informational systems design. They don‘t allows unambiguously understand formulating tasks, moreover availably specifications not always are complete. Because of this informational system does not correspond to users needs. Using informal methods specification transformation to software code isn‘t always possible. In real time informational systems problematic domain is varying in time. Thus are changing requirements for informational systems. Using informal methods, to solve this problem, usually we need to rewrite software. Using formal methods we don‘t have to rewrite software, it is enough organization business instructions specified in Z transform to software code. In this paper we present research results about Z specification method use for formal requirements specification for informational systems design. Using Z/EVES - an interactive system for composing, checking, and analyzing Z specifications, was accomplished Z specification validation, theretofore reviewing the list of available Z specification validation tools. Z specification language was compared with object-oriented language Object–Z to find out advantages and disadvantages of these two formal specification languages. Were discussed questions about Z specification transformation to Object-Z, which facilities an object-oriented specification extension to object-oriented programming languages. In this paper transformation methodology from object-Z... [to full text]
49

Combining advanced formal hardware verification techniques

Reeber, Erik Henry, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
50

Formal specification and verification of safety interlock systems : a comparative case study /

Seotsanyana, Motlatsi. January 2007 (has links)
Thesis (MSc)--University of Stellenbosch, 2007. / Bibliography. Also available via the Internet.

Page generated in 0.0644 seconds