Spelling suggestions: "subject:"[een] FUEL ECONOMY"" "subject:"[enn] FUEL ECONOMY""
31 |
Vehicle Fuel Economy And Vehicle Miles Traveled: An Empirical Investigation Of Jevons’ ParadoxMunyon, Vinola Vincent 14 November 2014 (has links)
No description available.
|
32 |
Three Essays on the Applications of Housing TransactionsBaron, Aneil 28 October 2016 (has links)
No description available.
|
33 |
Prediction of mobility, handling, and tractive efficiency of wheeled off-road vehiclesSenatore, Carmine 25 May 2010 (has links)
Our society is heavily and intrinsically dependent on energy transformation and usage. In a world scenario where resources are being depleted while their demand is increasing, it is crucial to optimize every process. During the last decade the concept of energy efficiency has become a leitmotif in several fields and has directly influenced our everyday life: from light bulbs to airplane turbines, there has been a general shift from pure performance to better efficiency.
In this vein, we focus on the mobility and tractive efficiency of off-road vehicles. These vehicles are adopted in military, agriculture, construction, exploration, recreation, and mining applications and are intended to operate on soft, deformable terrain.
The performance of off-road vehicles is deeply influenced by the tire-soil interaction mechanism. Soft soil can drastically reduce the traction performance of tires up to the point of making motion impossible. In this study, a tire model able to predict the performance of rigid wheels and flexible tires is developed. The model follows a semi-empirical approach for steady-state conditions and predicts basic features, such as the drawbar pull, the driving torque and the lateral force, as well as complex behaviors, such as the slip-sinkage phenomenon and the multi-pass effect. The tractive efficiency of different tire-soil configurations is simulated and discussed. To investigate the handling and the traction efficiency, the tire model is implemented into a four-wheel vehicle model. Several tire geometries, vehicle configurations (FWD, RWD, AWD), soil types, and terrain profiles are considered to evaluate the performance under different simulation scenarios. The simulation environment represents an effective tool to realistically analyze the impact of tire parameters (size, inflation pressure) and torque distribution on the energy efficiency. It is verified that larger tires and decreased inflation pressure generally provide better traction and energy efficiency (under steady-state working conditions). The torque distribution strategy between the axles deeply affects the traction and the efficiency: the two variables can't clearly be maximized at the same time and a trade-off has to be found. / Ph. D.
|
34 |
Model and Control System Development for a Plug-In Parallel Hybrid Electric VehicleMarquez Brunal, Eduardo De Jesus 20 June 2016 (has links)
The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech is participating in the EcoCAR 3 Advanced Vehicle Technology Competition series organized by Argonne National Labs (ANL), and sponsored by General Motors (GM) and the U.S. Department of Energy (DOE). EcoCAR 3 is a 4-year collegiate competition that challenges student with redesigning a 2016 Chevrolet Camaro into a hybrid. The five main goals of EcoCAR 3 are to reduce petroleum energy use (PEU) and green house gas (GHG) emissions while maintaining safety, consumer acceptability, and performance, with an increased focus on cost and innovation. HEVT selected a P3 Plug-in Parallel hybrid electric vehicle (PHEV) to meet design goals and competition requirements. This study presents different stages of the vehicle development process (VDP) followed to integrate the HEVT Camaro. This work documents the control system development process up to Year 2 of EcoCAR 3.
The modeling process to select a powertrain is the first stage in this research. Several viable powertrains and the respective vehicle technical specifications (VTS) are evaluated. The P3 parallel configuration with a V8 engine is chosen because it generated the set of VTS that best meet design goals and EcoCAR 3 requirements. The V8 engine also preserves the heritage of the Camaro, which is attractive to the established target market. In addition, E85 is chosen as the fuel for the powertrain because of the increased impact it has on GHG emissions compared to E10 and gasoline. The use of advanced methods and techniques like model based design (MBD), and rapid control prototyping (RCP) allow for faster development of engineering products in industry. Using advanced engineering techniques has a tremendous educational value, and these techniques can assist the development of a functional and safe hybrid control system. HEVT has developed models of the selected hybrid powertrain to test the control code developed in software. The strategy developed is a Fuzzy controller for torque management in charge depleting (CD) and charge sustaining (CS) modes. The developed strategy proves to be functional without having a negative impact of the energy consumption characteristics of the hybrid powertrain. Bench testing activities with the V8 engine, a low voltage (LV) motor, and high voltage (HV) battery facilitated learning about communication, safety, and functionality requirements for the three components. Finally, the process for parallel development of models and control code is presented as a way to implement more effective team dynamics. / Master of Science
|
35 |
An Illustrative Look at Energy Flow through Hybrid Powertrains for Design and AnalysisWhite, Eli Hampton 09 July 2014 (has links)
Throughout the past several years, a major push has been made for the automotive industry to provide vehicles with lower environmental impacts while maintaining safety, performance, and overall appeal. Various legislation has been put into place to establish guidelines for these improvements and serve as a challenge for automakers all over the world. In light of these changes, hybrid technologies have been growing immensely on the market today as customers are seeing the benefits with lower fuel consumption and higher efficiency vehicles. With the need for hybrids rising, it is vital for the engineers of this age to understand the importance of advanced vehicle technologies and learn how and why these vehicles can change the world as we know it. To help in the education process, this thesis seeks to define a powertrain model created and developed to help users understand the basics behind hybrid vehicles and the effects of these advanced technologies.
One of the main goals of this research is to maintain a simplified approach to model development. There are very complex vehicle simulation models in the market today, however these can be hard to manipulate and even more difficult to understand. The 1 Hz model described within this work aims to allow energy to be simply and understandable traced through a hybrid powertrain. Through the use of a 'backwards' energy tracking method, demand for a drive cycle is found using a drive cycle and vehicle parameters. This demand is then used to determine what amount of energy would be required at each component within the powertrain all the way from the wheels to the fuel source, taking into account component losses and accessory loads on the vehicle. Various energy management strategies are developed and explained including controls for regenerative braking, Battery Electric Vehicles, and Thermostatic and Load-following Series Hybrid Electric Vehicles. These strategies can be easily compared and manipulated to understand the tradeoffs and limitations of each.
After validating this model, several studies are completed. First, an example of using this model to design a hybrid powertrain is conducted. This study moves from defining system requirements to component selection, and then finding the best powertrain to accomplish the given constraints. Next, a parameter known as Power Split Fraction is studied to provide insight on how it affects overall powertrain efficiency. Since the goal with advanced vehicle powertrains is to increase overall system efficiency and reduce overall energy consumption, it is important to understand how all of the factors involved affect the system as a whole. After completing these studies, this thesis moves on to discussing future work which will continue refining this model and making it more applicable for design. Overall, this work seeks to provide an educational tool and aid in the development of the automotive engineers of tomorrow. / Master of Science
|
36 |
VTool: A Method for Predicting and Understanding the Energy Flow and Losses in Advanced Vehicle PowertrainsAlley, Robert Jesse 19 July 2012 (has links)
As the global demand for energy increases, the people of the United States are increasingly subject to high and ever-rising oil prices. Additionally, the U.S. transportation sector accounts for 27% of total nationwide Greenhouse Gas (GHG) emissions. In the U.S. transportation sector, light-duty passenger vehicles account for about 58% of energy use. Therefore incremental improvements in light-duty vehicle efficiency and energy use will significantly impact the overall landscape of energy use in America.
A crucial step to designing and building more efficient vehicles is modeling powertrain energy consumption. While accurate modeling is indeed key to effective and efficient design, a fundamental understanding of the powertrain and auxiliary systems that contribute to energy consumption for a vehicle is equally as important if not more important. This thesis presents a methodology that has been packaged into a tool, called VTool, that can be used to estimate the energy consumption of a vehicle powertrain. The method is intrinsically designed to foster understanding of the vehicle powertrain as it relates to energy consumption while still providing reasonably accurate results. VTool explicitly calculates the energy required at the wheels of the vehicle to complete a prescribed drive cycle and then explicitly applies component efficiencies to find component losses and the overall energy consumption for the drive cycle. In calculating component efficiencies and losses, VTool offers several tunable parameters that can be used to calibrate the tool for a particular vehicle, compare powertrain architectures, or simply explore the tradeoffs and sensitivities of certain parameters.
In this paper, the method is fully and explicitly developed to model Electric Vehicles (EVs), Series Hybrid Electric Vehicles (HEVs) and Parallel HEVs for various different drive cycles. VTool has also been validated for use in UDDS and HwFET cycles using on-road test results from the 2011 EcoCAR competition. By extension, the method could easily be extended for use in other cycles. The end result is a tool that can predict fuel consumption to a reasonable degree of accuracy for a variety of powertrains, calculate J1711 Utility Factor weighted energy consumption for Extended Range Electric Vehicles (EREVs) and determine the Well-to-Wheel impact of a given powertrain or fuel. VTool does all of this while performing all calculations explicitly and calculating all component losses to allow the user maximum access which promotes understanding and comprehension of the fundamental dynamics of automotive fuel economy and the powertrain as a system. / Master of Science
|
37 |
Design of a novel rotary compact power pack for the series hybrid electric vehicle : design and simulation of a compact power pack consisting of a novel rotary engine and outer rotor induction machine for the series hybrid electric vehicle powertrainAmirian, Hossein January 2010 (has links)
Hybrid electric vehicles significantly reduce exhaust emissions and increase fuel economy. Power packs are the most fundamental components in a series powertrain configuration of a hybrid vehicle, which produce the necessary power to run the vehicle. The aim of this project is to design a compact power pack for a series hybrid vehicle, using virtual prototyping. The hybrid electric vehicle characteristics and configurations are analysed, followed by an explanation of the principles of induction machines. A new type of rotary induction machine with an outer rotor construction is designed to be coupled with the novel rotary internal combustion engine with rotating crankcase in order to form the compact power unit for the hybrid vehicle. The starting and generation performance of the designed machine is analysed by an electric machine simulator, called JMAG. ADVISOR software is studied and utilised to simulate the overall vehicle performance, employing different categories of power packs in the powertrain. Results show that the proposed compact power pack has the best performance in terms of fuel economy, emissions and battery charging compared to the existing power unit options. Over the city cycle, fuel economy is increased by up to 47 % with emission reduced by up to 36 % and over the highway cycle, fuel economy is increased by up to 69 % with emission reduced by up to 42 %.
|
38 |
Hybrid Controls Development and Optimization of a Fuel Cell Hybrid PowertrainKoch, Alexander Karl January 2012 (has links)
The University of Waterloo Alternative Fuels Team’s participation in EcoCAR: The Next Challenge provided an unparalleled opportunity to execute advanced vehicle technology research with hands on learning and industry leading mentoring from practicing engineers in the automotive industry. This thesis investigates the optimization of the hybrid operating strategy on board the EcoCAR development vehicle. This investigation provides the framework to investigate the pros and cons of different hybrid control strategies, develop the model based design process for controls development in a student team environment and take the learning of this research and apply them to a mule development vehicle.
A primary controls development model was created to simulate software controls before releasing to the vehicle level and served as a tool to evaluate and compare control strategies. The optimization routine was not directly compatible with this model and so a compromise was made to develop a simplified vehicle model in the MATLAB environment that would be useful for observing trends but realizing that the accuracy of the results may not be totally consistent with the real world vehicle. These optimization results were then used to create a new control strategy that was simulated in the original vehicle development model. This new control strategy exhibited a 15% gain in fuel economy over the best case from the literature during an Urban Dynamometer Driving Schedule (UDDS) drive cycle.
Recommendations for future work include adding charge depletion operation to the simulation test cases and improving the accuracy of the optimization model by removing the simplifications that contributed to faster simulation time. This research has also illustrated the wide variability of drive cycles from the mildly aggressive UDDS cycle having 5 kilowatts average propulsion power to the very aggressive US06 cycle having 19 kilowatts average propulsion power and their impact on the efficiency of a particular control strategy. Understanding how to adapt or tune software for particular drive cycle or driver behaviour may lead to an interesting area of research.
|
39 |
Exhaust system energy management of internal combustion enginesWijewardane, M. Anusha January 2012 (has links)
Today, the investigation of fuel economy improvements in internal combustion engines (ICEs) has become the most significant research interest among the automobile manufacturers and researchers. The scarcity of natural resources, progressively increasing oil prices, carbon dioxide taxation and stringent emission regulations all make fuel economy research relevant and compelling. The enhancement of engine performance solely using incylinder techniques is proving increasingly difficult and as a consequence the concept of exhaust energy recovery has emerged as an area of considerable interest. Three main energy recovery systems have been identified that are at various stages of investigation. Vapour power bottoming cycles and turbo-compounding devices have already been applied in commercially available marine engines and automobiles. Although the fuel economy benefits are substantial, system design implications have limited their adaptation due to the additional components and the complexity of the resulting system. In this context, thermo-electric (TE) generation systems, though still in their infancy for vehicle applications have been identified as attractive, promising and solid state candidates of low complexity. The performance of these devices is limited to the relative infancy of materials investigations and module architectures. There is great potential to be explored. The initial modelling work reported in this study shows that with current materials and construction technology, thermo-electric devices could be produced to displace the alternator of the light duty vehicles, providing the fuel economy benefits of 3.9%-4.7% for passenger cars and 7.4% for passenger buses. More efficient thermo-electric materials could increase the fuel economy significantly resulting in a substantially improved business case. The dynamic behaviour of the thermo-electric generator (TEG) applied in both, main exhaust gas stream and exhaust gas recirculation (EGR) path of light duty and heavy duty engines were studied through a series of experimental and modelling programs. The analyses of the thermo-electric generation systems have highlighted the need for advanced heat exchanger design as well as the improved materials to enhance the performance of these systems. These research requirements led to the need for a systems evaluation technique typified by hardware-in-the-loop (HIL) testing method to evaluate heat exchange and materials options. HIL methods have been used during this study to estimate both the output power and the exhaust back pressure created by the device. The work has established the feasibility of a new approach to heat exchange devices for thermo-electric systems. Based on design projections and the predicted performance of new materials, the potential to match the performance of established heat recovery methods has been demonstrated.
|
40 |
Hybrid Controls Development and Optimization of a Fuel Cell Hybrid PowertrainKoch, Alexander Karl January 2012 (has links)
The University of Waterloo Alternative Fuels Team’s participation in EcoCAR: The Next Challenge provided an unparalleled opportunity to execute advanced vehicle technology research with hands on learning and industry leading mentoring from practicing engineers in the automotive industry. This thesis investigates the optimization of the hybrid operating strategy on board the EcoCAR development vehicle. This investigation provides the framework to investigate the pros and cons of different hybrid control strategies, develop the model based design process for controls development in a student team environment and take the learning of this research and apply them to a mule development vehicle.
A primary controls development model was created to simulate software controls before releasing to the vehicle level and served as a tool to evaluate and compare control strategies. The optimization routine was not directly compatible with this model and so a compromise was made to develop a simplified vehicle model in the MATLAB environment that would be useful for observing trends but realizing that the accuracy of the results may not be totally consistent with the real world vehicle. These optimization results were then used to create a new control strategy that was simulated in the original vehicle development model. This new control strategy exhibited a 15% gain in fuel economy over the best case from the literature during an Urban Dynamometer Driving Schedule (UDDS) drive cycle.
Recommendations for future work include adding charge depletion operation to the simulation test cases and improving the accuracy of the optimization model by removing the simplifications that contributed to faster simulation time. This research has also illustrated the wide variability of drive cycles from the mildly aggressive UDDS cycle having 5 kilowatts average propulsion power to the very aggressive US06 cycle having 19 kilowatts average propulsion power and their impact on the efficiency of a particular control strategy. Understanding how to adapt or tune software for particular drive cycle or driver behaviour may lead to an interesting area of research.
|
Page generated in 0.0561 seconds