• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Drive Quality Improvement and Calibration of a Post-Transmission Parallel Hybrid Electric Vehicle

Reinsel, Samuel Joseph 18 September 2018 (has links)
The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech is one of 16 university teams participating in EcoCAR 3, the latest competition in the Advanced Vehicle Technology Competitions (AVTC) organized by Argonne National Labs. EcoCAR 3 tasks teams with converting a 2016 Chevrolet Camaro into a hybrid electric vehicle with 5 main goals: reducing petroleum energy use and greenhouse gas emissions while maintaining safety, performance, and consumer acceptability. Over the last 4 years, HEVT has designed and built a plugin parallel hybrid electric vehicle with a unique powertrain architecture. This work deals with utilizing the unique powertrain layout of the HEVT Camaro to improve drive quality, a key component in consumer acceptability. Although there are many ways to approach drive quality, most aspects can be analyzed in the smoothness of the vehicle longitudinal acceleration response. This research is focused on improving the drive quality of the vehicle developed for EcoCAR 3. Multiple algorithms are developed to address specific aspects of drive quality that can only be done with the powertrain developed. This begins by researching the control strategies used in modern automatic transmissions, and moves into the modeling strategy used to begin algorithm development. Two main strategies are developed and calibrated in the vehicle. The first being a strategy for reducing jerk in pure electric mode by limiting motor torque response. The second strategy aims to improve transmission shift quality by using the electric motor to reduce torque fluctuations at the driveshaft. The energy consumption impact of both of these strategies is also analyzed to ensure that drive quality does not come at the large expense of energy consumption. / Master of Science / The Hybrid electric vehicle team (HEVT) of Virginia Tech is one of 16 university teams participating in EcoCAR 3, the latest competition in the Advanced Vehicle Technology Competitions (AVTC) organized by Argonne National Labs. EcoCAR 3 tasks teams with converting a 2016 Chevrolet Camaro into a hybrid electric vehicle with 5 main goals: reducing petroleum energy use and greenhouse gas emissions while maintaining safety, performance, and consumer acceptability. Over the last 4 years, HEVT has designed and built a plugin parallel hybrid electric vehicle with a unique powertrain architecture. This work deals with utilizing the unique powertrain layout of the HEVT Camaro to improve drive quality, a key component in consumer acceptability. Multiple strategies were examined and implemented for different driving conditions, and ultimately an improvement was made. However, new challenges are introduced by having some components remain stock that limit the success of smoothing gear shifts.
2

Model and Control System Development for a Plug-In Parallel Hybrid Electric Vehicle

Marquez Brunal, Eduardo De Jesus 20 June 2016 (has links)
The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech is participating in the EcoCAR 3 Advanced Vehicle Technology Competition series organized by Argonne National Labs (ANL), and sponsored by General Motors (GM) and the U.S. Department of Energy (DOE). EcoCAR 3 is a 4-year collegiate competition that challenges student with redesigning a 2016 Chevrolet Camaro into a hybrid. The five main goals of EcoCAR 3 are to reduce petroleum energy use (PEU) and green house gas (GHG) emissions while maintaining safety, consumer acceptability, and performance, with an increased focus on cost and innovation. HEVT selected a P3 Plug-in Parallel hybrid electric vehicle (PHEV) to meet design goals and competition requirements. This study presents different stages of the vehicle development process (VDP) followed to integrate the HEVT Camaro. This work documents the control system development process up to Year 2 of EcoCAR 3. The modeling process to select a powertrain is the first stage in this research. Several viable powertrains and the respective vehicle technical specifications (VTS) are evaluated. The P3 parallel configuration with a V8 engine is chosen because it generated the set of VTS that best meet design goals and EcoCAR 3 requirements. The V8 engine also preserves the heritage of the Camaro, which is attractive to the established target market. In addition, E85 is chosen as the fuel for the powertrain because of the increased impact it has on GHG emissions compared to E10 and gasoline. The use of advanced methods and techniques like model based design (MBD), and rapid control prototyping (RCP) allow for faster development of engineering products in industry. Using advanced engineering techniques has a tremendous educational value, and these techniques can assist the development of a functional and safe hybrid control system. HEVT has developed models of the selected hybrid powertrain to test the control code developed in software. The strategy developed is a Fuzzy controller for torque management in charge depleting (CD) and charge sustaining (CS) modes. The developed strategy proves to be functional without having a negative impact of the energy consumption characteristics of the hybrid powertrain. Bench testing activities with the V8 engine, a low voltage (LV) motor, and high voltage (HV) battery facilitated learning about communication, safety, and functionality requirements for the three components. Finally, the process for parallel development of models and control code is presented as a way to implement more effective team dynamics. / Master of Science

Page generated in 0.0521 seconds