• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 96
  • 19
  • 11
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 195
  • 195
  • 90
  • 88
  • 41
  • 31
  • 30
  • 28
  • 25
  • 25
  • 24
  • 23
  • 23
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Reverse-selective zeolite/polymer nanocomposite hollow fiber membranes for pervaporative biofuel/water separation

McFadden, Kathrine D. 08 April 2010 (has links)
Pervaporation with a "reverse-selective" (hydrophobic) membrane is a promising technology for the energy-efficient separation of alcohols from dilute alcohol-water streams, such as those formed in the production of biofuels. Pervaporation depends on the selectivity and throughput of the membrane, which in turn is highly dependent on the membrane material. A nanocomposite approach to membrane design is desirable in order to combine the advantages and eliminate the individual limitations of previously-reported polymeric and zeolitic membranes. In this work, a hollow-fiber membrane composed of a thin layer of polymer/zeolite nanocomposite material on a porous polymeric hollow fiber support is developed. The hollow fiber geometry offers considerable advantages in membrane surface area per unit volume, allowing for easier scaling and higher throughput than flat-film membranes. Poly(dimethyl siloxane) (PDMS) and pure-silica MFI zeolite (silicalite-1) were investigated for these membranes. Iso-octane was used to dilute the dope solution to provide thinner coatings. Previously-spun non-selective Torlon hollow fibers were used as the support layer for the nanocomposite coatings. To determine an acceptable method for coating fibers with uniform, defect-free coatings, flat-film membranes (0 to 60 wt% MFI on a solvent-free basis) and hollow-fiber membranes (0 and 20 wt% MFI) were fabricated using different procedures. Pervaporation experiments were run for all membranes at 65C with a 5 wt% ethanol feed. The effects of membrane thickness, fiber pretreatment, coating method, zeolite loading, and zeolite surface treatment on membrane pervaporation performance were investigated.
132

Mixed matrix membranes for mixture gas separation of butane isomers

Esekhile, Omoyemen Edoamen 14 November 2011 (has links)
The goal of this project was to understand and model the performance of hybrid inorganic-organic membranes under realistic operating conditions for hydrocarbon gas/vapor separation, using butane isomers as the model vapors and a hybrid membrane of 6FDA-DAM-5A as an advanced separation system. To achieve the set goal, three objectives were laid out. The first objective was to determine the factors affecting separation performance in dense neat polymer. One main concern was plasticization. High temperature annealing has been reported as an effect means of suppressing plasticization. A study on the effect of annealing temperature was performed by analyzing data acquired via sorption and permeation measurements. Based on the findings from this study, a suitable annealing temperature was determined. Another factor studied was the effect of operating temperature. In deciding a suitable operating temperature, factors such as its possible effect on plasticization as well as reducing heating/cooling cost in industrial application were considered. Based on the knowledge that industrial applications of this membrane would involve mixture separation, the second objective was to understand and model the complexity of a mixed gas system. This was investigated via permeation measurements using three feed compositions. An interesting transport behavior was observed in the mixed gas system, which to the best of our knowledge, has not been observed in other mixed gas systems involving smaller penetrants. This mixed gas transport behavior presented a challenge in predictability using well-established transport models. Two hypotheses were made to explain the observed transport behavior, which led to the development of a new model termed the HHF model and the introduction of a fitting parameter termed the CAUFFV fit. Both the HHF model and CAUFFV fit showed better agreement with experimental data than the well-established mixed gas transport model. The final objective was to explore the use of mixed matrix membranes as a means of improving the separation performance of this system. A major challenge with the fabrication of good mixed matrix membranes was the adhesion of the zeolite particle with the polymer. This was addressed via sieve surface modification through a Grignard treatment process. Although a Grignard treatment procedure existed, there was a challenge of reproducibility of the treatment. This challenge was addressed by exploring the relationship between the sieves and the solvent used in the treatment, and taking advantage of this relationship in the Grignard treatment process. This study helped identify a suitable solvent, which allowed for successful and reproducible treatment of commercial LTA sieves; however, treatment of lab-made sieves continues to prove challenging. Based on improved understanding of the Grignard treatment reaction mechanism, modifications were made to the existing Grignard treatment procedure, resulting in the introduction of a "simplified" Grignard treatment procedure. The new procedure requires less control over the reaction process, thus making it more attractive for industrial application. Permeation measurements were made using mixed matrix membranes in both single and mixed gas systems. Selectivity enhancements were observed under both single and mixed gas systems using sieve loadings of 25 and 30wt%. The Maxwell model was used to make predictions of mixed matrix membrane performance. Although the experimental results were not in exact agreement with Maxwell predictions, the observed selectivity enhancement was very encouraging and shows potential for future application. Recommendations were made for future study of this system.
133

HYDRATE PROCESSES FOR CO2 CAPTURE AND SCALE UP USING A NEW APPARATUS.

Englezos, Peter, Ripmeester, John A., Kumar, Rajnish, Linga, Praveen 07 1900 (has links)
One of the new approaches for capturing carbon dioxide from treated flue gas (post-combustion capture) and fuel gas (pre-combustion capture) is based on gas hydrate crystallization. The presence of small amount of tetrahydrofuran (THF) substantially reduces the hydrate formation pressure from a flue (CO2/N2) gas mixture and offers the possibility to capture CO2 at medium pressures [1]. A conceptual flow sheet for a medium pressure hydrate process for pre-combustion capture from a fuel gas (CO2/H2) was also developed and presented. In order to test the hydrate-based separation processes for pre and post combustion capture of CO2 at a larger scale a new apparatus that can operate with different gas/water contact modes is set up and presented.
134

Evaluation and application of new nanoporous materials for acid gas separations

Thompson, Joshua A. 19 September 2013 (has links)
Distillation and absorption columns offer significant energy demands for future development in the petrochemical and fine chemical industries. Membranes and adsorbents are attractive alternatives to these classical separation units due to lower operating cost and easy device fabrication; however, membranes possess an upper limit in separation performance that results in a trade-off between selectivity (purity) and permeability (productivity) for the target gas product, and adsorbents require the need to be water-resistant to natural gas streams in order to withstand typical gas compositions. Composite membranes, or mixed-matrix membranes, are an appealing alternative to pure polymeric membrane materials by use of a molecular sieve “filler” phase which has higher separation performance than the pure polymer. In this thesis, the structure-property-processing relationships for a new class of molecular sieves known as zeolitic imidazolate frameworks (ZIFs) are investigated for their use as the filler phase in composite membranes or as adsorbents. These materials show robust chemical and thermal stability and are a promising class of molecular sieves for acid gas (CO₂/CH₄) separations. The synthesis of mixed-linker ZIFs is first investigated. It is shown that the organic linker composition in these materials is controllable without changing the crystal structure or significantly altering the thermal decomposition properties. There are observable changes in the adsorption properties, determined by nitrogen physisorption, that depend on the overall linker composition. The results suggest the proposed synthesis route facilitates a tunable process to control either the adsorption or diffusion properties depending on the linker composition. The structure-property-processing relationship for a specific ZIF, ZIF-8, is then investigated to determine the proper processing conditions necessary for fabricating defect-free composite membranes. The effect of ultrasonication shows an unexpected coarsening of ZIF-8 nanoparticles that grow with increased sonication time, but the structural integrity is shown to be maintained after sonication by using X-ray diffraction, Pair Distribution Function analysis, and nitrogen physisorption. The permeation properties of composite membranes revealed that intense ultrasonication is necessary to fabricate defect-free membranes for CO₂/CH₄ gas separations. Finally, the separation properties of mixed-linker ZIFs is investigated by using adsorption studies of CO₂ and CH₄ and using composite membranes with differing linker compositions. Adsorption properties of mixed-linker ZIFs reveal that these materials possess tunable surface properties, and a selectivity enhancement of six fold over ZIF-8 is observed with mixed-linker ZIFs without changing the crystal structure. Gas permeation studies of composite membranes reveal that the separation properties of mixed-linker ZIFs are different from their parent frameworks. By proper selection of mixed-linker ZIFs, there is an overall improvement of separation properties in the composite membranes when compared to ZIF-8.
135

Properties of inorganically surface-modified zeolites and zeolite/ polyimide nanocomposite membranes

Lydon, Megan Elizabeth 20 September 2013 (has links)
Mixed matrix membranes (MMMs) consisting of a polymer bulk phase and an inorganic dispersed phase have the potential to provide a more selective membrane because they incorporate the selectivity of a zeolite dispersed phase while maintaining the ease of use of a polymer membrane. A critical problem in MMM applications is control over the polymer-zeolite interface adhesion during fabrication which can detrimentally impact membrane performance. In this work, MgOxHy (1≤x≤2, 0≤y≤2) nanostructures have been grown on pure-silica MFI and aluminosilicate LTA zeolites through four surface deposition techniques: Grignard decomposition reactions, solvothermal and modified solvothermal depositions, and ion-exchange induced surface crystallization. The structural properties of the surface nanostructures produced by each of the four methods were thoroughly characterized for their morphology, crystallinity, porosity, surface area, elemental composition, and these properties were used to predict the method’s suitability for use in composite membranes. The nanostructured zeolites were used in mixed matrix membranes (MMMs) at two MMMs weight loadings. The dispersion, mechanical properties, and CO₂/CH₄ gas separation properties were measured MMMs made with each method of functionalized LTA. All functionalization methods improve adhesion with the polymer observable by microscopy, the dispersion of particles, and the elastic modulus and hardness of the membrane. Gas permeation measurements prove the quality and effectiveness of the Ion Exchange membrane for CO₂/CH₄ separation by its significant increase in selectivity over the pure polymer. Lastly, the interface between the two materials was studied by probing the interfacial polymer mobility using NMR spin-spin relaxation measurements and mechanical mapping of membrane cross sections. It was shown that the nanostructures have both steric and chemical interactions with the polymer. Mapping of the elastic modulus indicated that functionalization methods that resulted in poorer zeolite coverage also disrupted the mechanical properties of the membrane at the interface of the materials. The investigations in this thesis provide detailed structure-property relationships of surface-modified molecular sieves and nanocomposite membranes fabricated using these materials, allowing a rational approach to the design of such materials and membranes.
136

Nanoporous layered oxide materials and membranes for gas separations

Kim, Wun-Gwi 02 April 2013 (has links)
The overall focus of this thesis is on the development and understanding of nanoporous layered silicates and membranes, particularly for potential applications in gas separations. Nanoporous layered materials are a rapidly growing area of interest, and include materials such as layered zeolites, porous layered oxides, layered aluminophosphates, and porous graphenes. They possess unique transport properties that may be advantageous for membrane and thin film applications. These materials also have very different chemistry from 3-D porous materials due to the existence of a large, chemically active, external surface area. This feature also necessitates the development of innovative strategies to process these materials into membranes and thin films with high performance.
137

Remediation of Cellulose Acetate Gas Separation Membranes Contaminated by Heavy Hydrocarbons

Ulloa, Charlie Jose January 2012 (has links)
Polymeric membranes have been essential to increasing the efficiency of membrane separation processes. The viability of membrane systems for industrial gas applications lies in the tolerance of such membranes to contamination. While membrane contamination from volatile species can be addressed using purge streams and heat treatment, contamination from non-volatile hydrocarbons can cause a significant decline in membrane permselectivity. This study was focused on the characterization and remediation of cellulose acetate (CA) hollow fibre membranes contaminated by heavy hydrocarbons. CA membranes have a moderate resistance against performance decline from hydrocarbons found in natural gas. Hollow fibre CA membranes were coated with motor oil lubricant to simulate heavy hydrocarbon contamination from large-scale gas compressors and industrial feed streams, and remediation of the CA fibres was conducted using solvent extraction methods. The permeabilities of the membranes to carbon dioxide, helium, hydrogen, methane, nitrogen and oxygen were measured at pressures 300 – 1500kPa and at temperatures 25° – 50°C. It was shown that even a thin layer of oil on the membrane surface can result in substantial losses in membrane performance, with faster permeating gases (e.g. He and H₂) suffering the worst losses. Solvent exchange, in which the membrane was washed using a series of solutions of varying organic content, was unable to remediate the membrane effectively, while the removal of the heavy hydrocarbons by a direct cyclohexane rinse was found to work well to restore the membrane performance.
138

Thickness dependent physical aging and supercritical carbon dioxide conditioning effects on crosslinkable polyimide membranes for natural gas purification

Kratochvil, Adam Michal 30 June 2008 (has links)
Membrane separations are rapidly growing alternatives to traditionally expensive gas separation processes. For natural gas purification, membranes are used to remove carbon dioxide to prevent pipeline corrosion and increase the heating value of the natural gas. The robust chemical and physical properties of polyimide membranes make them ideal for the numerous components and high pressures associated with natural gas production. Typically, the performance of membranes changes over time as a result of physical aging of the polymer. Previous work shows that the thin selective layer of an asymmetric hollow fiber membrane, the morphology of choice for gas separations, ages differently than a thick dense film of the same material. Also, carbon dioxide, which is highly soluble in most polymers, can actively swell and plasticize polymer membranes at higher pressures. In this work, free acid groups present in the model polyimide are covalently crosslinked to stabilize the matrix against plasticization. Physical aging of two different crosslinked derivatives are compared to the free acid polyimide through gas permeation, gas sorption, and refractive index measurements. Thick (~50 m) and thin (~650 nm) films are examined to determine the effects of sample dimension on physical aging. The crosslinking mechanism employs diol substituents to form ester linkages through the free acid group. However, the annealing treatment, above the glass transition temperature, used to "reset" the thermal history of the films is found to form a new crosslinked polymer. Characterization of this new crosslinking mechanism reveals a high-temperature decarboxylation of the free acid creates free-radical phenyl groups which form covalent crosslinks through other portions of the polymer structure. Since ester crosslinks may be vulnerable to hydrolysis in aggressive gas feed streams, this new mechanism of crosslinking may create a more robust membrane for aggressive separations. In addition to the physical aging study, supercritical carbon dioxide conditioning of the two glycol crosslinked polyimides is compared to the free acid polymer. In this case, the free acid polymer is not crosslinked since the esterification crosslinking reaction occurs at much lower temperature than the decarboxylation mechanism. The free acid polymer displays an atypical permeation response under supercritical carbon dioxide conditions which suggests a structural reorganization of the polymer occurs. The crosslinked polymers do not exhibit this type of response. Mixed gas permeation confirms a substantial decrease in the productivity of the free acid polyimide and reveals the enhanced stability of the crosslinked polyimides following the supercritical carbon dioxide conditioning. Finally, examination of structurally similar fluorine-containing polyimides following approximately 18 years of aging allows the study of polymer structure on physical aging. A 6FDA-based polyimide is compared to a BPDA-based polyimide to understand the effects of bulky, CF3 groups on physical aging, and polyimides with diamine isomers reveal the effects of structural symmetry on physical aging.
139

High temperature proton-exchange and fuel processing membranes for fuel cells and other applications

Bai, He. January 2008 (has links)
Thesis (Ph. D.)--Ohio State University, 2008.
140

Separação de CO2 em gases de combustão : aplicação de membranas e criogenia

Lopez, Diego Ruben Schmeda January 2010 (has links)
Este trabalho tem por objetivo avaliar a viabilidade técnica de processos de separação de gás carbônico em correntes de gases de combustão. Neste sentido, a separação por meio de membranas e por criogenia são avaliadas por meio de simulação de sistemas. As propostas envolvendo membranas avaliam arranjos de membranas em série, os quais são otimizados para condições de maior fluxo permeado e maior beneficio econômico. A corrente de alimentação é de 5 kmol/s e as respectivas frações molares de CO2 e N2 que compõem esta corrente são 0,15 e 0,85. Os resultados obtidos da otimização, para um arranjo de três membranas em série de polyimida de 9000 m² de área superficial, foram uma corrente de permeado de 443,1 mol/s de CO2 a 41,6%, correspondendo a aproximadamente 59% do CO2 da corrente de alimentação. Já com um arranjo de 6 membranas de 9000 m², onde a função objetivo é o maior lucro, foi selecionado o material kapton e a quantidade de CO2 separada é 161,12 mol/s, cuja concentração na mistura é de 79%, e a função objetivo tem um valor de 24.405,30 €/ano. Na outra parte do trabalho, propõe-se e avalia-se um ciclo para o aproveitamento da disponibilidade térmica na regasificação do gás natural líquido, para liquefação de CO2. Obtém-se como resultando em CO2 líquido com fração molar igual a 94%. Este processo consta de uma corrente proveniente da combustão completa de 1 mol/s de metano, contendo 1 mol/s de CO2 e 7,52 mol/s de N2. Esta corrente é comprimida e resfriada até atingir a pressão de 4000 kPa e 25 °C, posteriormente uma membrana enriquece a corrente de gases de combustão, que novamente é comprimida e resfriada até se obter a condensação e separação do CO2. Realiza-se o cálculo de equilíbrio líquido-vapor da mistura utilizando as equações de Peng-Robinson e a regra de mistura de Van der Waals no software VRTherm. A vazão molar do CO2 líquido obtida é de 0,3207 mol/s na concentração declarada. A intensidade energética do processo é de 1,135 kWh/kg de CO2 liquefeito. / The objective of this work is to evaluate the technical feasibility of carbon dioxide separation processes of flue gases streams. In this way, separation processes due membrane and cryogenics are evaluated by system simulation. The systems using membranes evaluates setup of those membranes in series, these setups are optimized for the largest permeate molar flow and the largest economic profit. The feed stream is a 5 kmol/s CO2 – N2 mixture, with molar fraction of 0.15 and 0.85 respectively. The result obtained from the optimization for a setup of three polyimide membranes of 9000 m² is a permeate stream of 443.1 mol/s with CO2 at 41.6%, corresponding to aproximadely 59% of the CO2 contained in the feed stream. When a setup of six 9000 m² membranes is analyzed using an objective function that results in the largest profit, kapton was selected as the material for the membranes. The quantity of CO2 captured is 161.12 mol/s, at 79% of concentration in the mixture, and the objective function has a value of 24,405.30 €/year. The second part of this work, proposes and evaluates a cycle that takes the thermal availability of the regasification of liquid natural gas in advantage for CO2 liquefaction. The product of the cycle is liquid CO2, with a molar fraction of 0.94. The process is fed with a stream that comes from the stoichiometric combustion of 1 mol/s of methane, that stream is composed by 1 mol/s of CO2 and 7.52 mol/s of N2. The stream is then compressed up to the pressure of 4000 kPa and cooled down to 25 °C. After that a membrane concentrates the CO2 in one stream, which is again compressed and cooled down until the condensation of CO2 is achieved. Calculations of liquid – vapor are performed with the Peng- Robinson’s equations and the Van der Waals mixture rule using the software VRTherm. The molar flow rate of liquid CO2 obtained is of 0.3207 mol/s in the concentration mentioned before. The energy intensity of the process is of 1.135 kWh/kg of liquid CO2.

Page generated in 0.0437 seconds