Spelling suggestions: "subject:"[een] GENERALIZED PARETO DISTRIBUTION"" "subject:"[enn] GENERALIZED PARETO DISTRIBUTION""
1 |
Fire in the southern U.S: administrative laws and regulations in the Southeast and wildfire distribution in MississippiTolver, Branden 07 August 2010 (has links)
Wildfires in the United States present a complexity of problems for private landowners and policy makers. This thesis takes a look at two key issues faced by private and government stakeholders; the first being a lack of knowledge regarding current prescribed fire laws and regulations. A legal review of administrative laws and regulations for prescribed burning in the Southeastern United States in the context of management-based regulation is used to address this issue. It was found that regulation for prescribed burning has shifted to a more management–based regime. The second is an empirical study of wildfire distribution in the state of Mississippi. Wildfires appear to fit a Pareto distribution throughout the state given a certain threshold. When analyzed in conjunction both studies could aid lawmakers in projecting the effects of a given policy change on actual wildfire occurrences and distribution.
|
2 |
An empirical comparison of extreme value modelling procedures for the estimation of high quantilesEngberg, Alexander January 2016 (has links)
The peaks over threshold (POT) method provides an attractive framework for estimating the risk of extreme events such as severe storms or large insurance claims. However, the conventional POT procedure, where the threshold excesses are modelled by a generalized Pareto distribution, suffers from small samples and subjective threshold selection. In recent years, two alternative approaches have been proposed in the form of mixture models that estimate the threshold and a folding procedure that generates larger tail samples. In this paper the empirical performances of the conventional POT procedure, the folding procedure and a mixture model are compared by modelling data sets on fire insurance claims and hurricane damage costs. The results show that the folding procedure gives smaller standard errors of the parameter estimates and in some cases more stable quantile estimates than the conventional POT procedure. The mixture model estimates are dependent on the starting values in the numerical maximum likelihood estimation, and are therefore difficult to compare with those from the other procedures. The conclusion is that none of the procedures is overall better than the others but that there are situations where one method may be preferred.
|
3 |
A distribuição generalizada de Pareto e mistura de distribuições de Gumbel no estudo da vazão e da velocidade máxima do vento em Piracicaba, SP / The generalized Pareto distribution and Gumbel mixture to study flow and maximum wind speed in Piracicaba, SPSilva, Renato Rodrigues 10 October 2008 (has links)
A teoria dos valores extremos é um tópico da probabilidade que descreve a distribuição assintótica das estatísticas de ordem, tais como máximos ou mínimos, de uma seqüência de variáveis aleatórias que seguem uma função de distribuição F normalmente desconhecida. Descreve, ainda, a distribuição assintótica dos excessos acima de um valor limiar de um ou mais termos dessa seqüência. Dessa forma, as metodologias padrões utilizada neste contexto consistem no ajuste da distribuição generalizada dos valores extremos a uma série de máximos anuais ou no ajuste da distribuição generalizada de Pareto a uma série de dados compostas somente de observações excedentes de um valor limiar. No entanto, segundo Coles et al. (2003), há uma crescente insatisfação com o desempenho destes modelos padrões para predição de eventos extremos causada, possivelmente, por pressuposições não atendidas como a de independência das observações ou pelo fato de que os mesmos não sejam recomendados para serem utilizados em algumas situações específicas como por exemplo e quando observações de máximos anuais compostas por duas ou mais populações independentes de eventos extremos sendo que a primeira descreve eventos menos freqüentes e de maior magnitude e a segunda descreve eventos mais freqüentes e de menor magnitude. Então, os dois artigos que compõem este trabalho tem como objetivo apresentar alternativas de análise de valores extremos para estas situações em que o ajuste dos modelos padrões não são adequados. No primeiro, foram ajustadas as distribuições generalizada de Pareto e exponencial, caso particular da GP, aos dados de vazão média diária do Posto de Artemis, Piracicaba, SP, Brasil, conjuntamente com a técnica do desagrupamento, (declustering), e comparadas as estimativas dos níveis de retorno para períodos de 5, 10, 50 e 100 anos. Conclui-se que as estimativas intervalares dos níveis de retorno obtidas por meio do ajuste da distribuição exponencial são mais precisas do que as obtidas com o ajuste da distribuição generalizada de Pareto. No segundo artigo, por sua vez, foi apresentada uma metodologia para o ajuste da distribuição de Gumbel e de misturas de duas distribuições de Gumbel aos dados de velocidades de ventos mensais de Piracicaba, SP. Selecionou-se a distribuição que melhor ajustou-se aos dados por meio de testes de hipóteses bootstrap paramétrico e critérios de seleção AIC e BIC. E concluiu-se que a mistura de duas distribuições de Gumbel é a distribuição que melhor se ajustou-se aos dados de velocidades máxima de ventos dos meses de abril e maio, enquanto que o ajuste da distribuição de Gumbel foi o melhor para os meses de agosto e setembro. / The extreme value theory is a probability topics that describes the asymtoptic distribution of order statistics such as maximum or minimum of random variables sequence that follow a distribution function F normaly unknown. Describes still, the excess asymtoptic distribution over threshold of this sequence. So, the standard methodologies of extremes values analysis are the fitting of generalized extreme value distribution to yearly maximum series or the fitting of generalized Pareto distribution to partial duration series. However, according to Coles et al. (2003), there is a growing dissatisfaction with the use this standard models for the prediction of extremes events and one of possible causes this fact may be a false assumptions about a sequence of observed data as a independence assumptions or because the standards models must not used in some specific situations like for example when maximum sample arise from two or more independents populations, where the first population describes more frequents and low intense events and the second population describes less frequents and more intense events. In this way, the two articles this work has a objective show alternatives about extreme values analysis for this situations that the standards models doesn´t recommended. In the first article, the generalized distribution Pareto and exponencial distribution, particular case of GP, together with to declustering methods was applied to mean daily flow of the Piracicaba river, Artemis station, Piracicaba, SP, and the estimates the return levels of 5, 10, 50 and 100 years were compared. We conclude that the interval estimates of the 50 and 100 year return levels obtained using the fitting the exponencial distribution are more precise than those obtained using the generalized Pareto distribution. In the second article, we propose the fit of Gumbel distribution and the Gumbel mixture to data maximum speed wind in Piracicaba, SP. We select the best model using bootstrap test of hypotheses and the AIC and BIC selection criteria We conclude that the mixture Gumbel is the best model to analyze the maximum wind speed data for months of april e may and otherside the fit of Gumbel distributions was the best fit to months of august e september.
|
4 |
A distribuição generalizada de Pareto e mistura de distribuições de Gumbel no estudo da vazão e da velocidade máxima do vento em Piracicaba, SP / The generalized Pareto distribution and Gumbel mixture to study flow and maximum wind speed in Piracicaba, SPRenato Rodrigues Silva 10 October 2008 (has links)
A teoria dos valores extremos é um tópico da probabilidade que descreve a distribuição assintótica das estatísticas de ordem, tais como máximos ou mínimos, de uma seqüência de variáveis aleatórias que seguem uma função de distribuição F normalmente desconhecida. Descreve, ainda, a distribuição assintótica dos excessos acima de um valor limiar de um ou mais termos dessa seqüência. Dessa forma, as metodologias padrões utilizada neste contexto consistem no ajuste da distribuição generalizada dos valores extremos a uma série de máximos anuais ou no ajuste da distribuição generalizada de Pareto a uma série de dados compostas somente de observações excedentes de um valor limiar. No entanto, segundo Coles et al. (2003), há uma crescente insatisfação com o desempenho destes modelos padrões para predição de eventos extremos causada, possivelmente, por pressuposições não atendidas como a de independência das observações ou pelo fato de que os mesmos não sejam recomendados para serem utilizados em algumas situações específicas como por exemplo e quando observações de máximos anuais compostas por duas ou mais populações independentes de eventos extremos sendo que a primeira descreve eventos menos freqüentes e de maior magnitude e a segunda descreve eventos mais freqüentes e de menor magnitude. Então, os dois artigos que compõem este trabalho tem como objetivo apresentar alternativas de análise de valores extremos para estas situações em que o ajuste dos modelos padrões não são adequados. No primeiro, foram ajustadas as distribuições generalizada de Pareto e exponencial, caso particular da GP, aos dados de vazão média diária do Posto de Artemis, Piracicaba, SP, Brasil, conjuntamente com a técnica do desagrupamento, (declustering), e comparadas as estimativas dos níveis de retorno para períodos de 5, 10, 50 e 100 anos. Conclui-se que as estimativas intervalares dos níveis de retorno obtidas por meio do ajuste da distribuição exponencial são mais precisas do que as obtidas com o ajuste da distribuição generalizada de Pareto. No segundo artigo, por sua vez, foi apresentada uma metodologia para o ajuste da distribuição de Gumbel e de misturas de duas distribuições de Gumbel aos dados de velocidades de ventos mensais de Piracicaba, SP. Selecionou-se a distribuição que melhor ajustou-se aos dados por meio de testes de hipóteses bootstrap paramétrico e critérios de seleção AIC e BIC. E concluiu-se que a mistura de duas distribuições de Gumbel é a distribuição que melhor se ajustou-se aos dados de velocidades máxima de ventos dos meses de abril e maio, enquanto que o ajuste da distribuição de Gumbel foi o melhor para os meses de agosto e setembro. / The extreme value theory is a probability topics that describes the asymtoptic distribution of order statistics such as maximum or minimum of random variables sequence that follow a distribution function F normaly unknown. Describes still, the excess asymtoptic distribution over threshold of this sequence. So, the standard methodologies of extremes values analysis are the fitting of generalized extreme value distribution to yearly maximum series or the fitting of generalized Pareto distribution to partial duration series. However, according to Coles et al. (2003), there is a growing dissatisfaction with the use this standard models for the prediction of extremes events and one of possible causes this fact may be a false assumptions about a sequence of observed data as a independence assumptions or because the standards models must not used in some specific situations like for example when maximum sample arise from two or more independents populations, where the first population describes more frequents and low intense events and the second population describes less frequents and more intense events. In this way, the two articles this work has a objective show alternatives about extreme values analysis for this situations that the standards models doesn´t recommended. In the first article, the generalized distribution Pareto and exponencial distribution, particular case of GP, together with to declustering methods was applied to mean daily flow of the Piracicaba river, Artemis station, Piracicaba, SP, and the estimates the return levels of 5, 10, 50 and 100 years were compared. We conclude that the interval estimates of the 50 and 100 year return levels obtained using the fitting the exponencial distribution are more precise than those obtained using the generalized Pareto distribution. In the second article, we propose the fit of Gumbel distribution and the Gumbel mixture to data maximum speed wind in Piracicaba, SP. We select the best model using bootstrap test of hypotheses and the AIC and BIC selection criteria We conclude that the mixture Gumbel is the best model to analyze the maximum wind speed data for months of april e may and otherside the fit of Gumbel distributions was the best fit to months of august e september.
|
5 |
Bayesian Modeling of Sub-Asymptotic Spatial ExtremesYadav, Rishikesh 04 1900 (has links)
In many environmental and climate applications, extreme data are spatial by nature, and hence statistics of spatial extremes is currently an important and active area of research dedicated to developing innovative and flexible statistical models that determine the location, intensity, and magnitude of extreme events. In particular, the development of flexible sub-asymptotic models is in trend due to their flexibility in modeling spatial high threshold exceedances in larger spatial dimensions and with little or no effects on the choice of threshold, which is complicated with classical extreme value processes, such as Pareto processes.
In this thesis, we develop new flexible sub-asymptotic extreme value models for modeling spatial and spatio-temporal extremes that are combined with carefully designed gradient-based Markov chain Monte Carlo (MCMC) sampling schemes and that can be exploited to address important scientific questions related to risk assessment in a wide range of environmental applications. The methodological developments are centered around two distinct themes, namely (i) sub-asymptotic Bayesian models for extremes; and (ii) flexible marked point process models with sub-asymptotic marks. In the first part, we develop several types of new flexible models for light-tailed and heavy-tailed data, which extend a hierarchical representation of the classical generalized Pareto (GP) limit for threshold exceedances. Spatial dependence is modeled through latent processes. We study the theoretical properties of our new methodology and demonstrate it by simulation and applications to precipitation extremes in both Germany and Spain.
In the second part, we construct new marked point process models, where interest mostly lies in the extremes of the mark distribution. Our proposed joint models exploit intrinsic CAR priors to capture the spatial effects in landslide counts and sizes, while the mark distribution is assumed to take various parametric forms. We demonstrate that having a sub-asymptotic distribution for landslide sizes provides extra flexibility to accurately capture small to large and especially extreme, devastating landslides.
|
6 |
Metody modelování a statistické analýzy procesu extremálních hodnot / Methods of modelling and statistical analysis of an extremal value processJelenová, Klára January 2012 (has links)
In the present work we deal with the problem of etremal value of time series, especially of maxima. We study times and values of maximum by an approach of point process and we model distribution of extremal values by statistical methods. We estimate parameters of distribution using different methods, namely graphical methods of data analysis and subsequently we test the estimated distribution by tests of goodness of fit. We study the stationary case and also the cases with a trend. In connection with distribution of excesess and exceedances over a threshold we deal with generalized Pareto distribution.
|
7 |
Teorie extrémních hodnot v aktuárských vědách / Extreme Value Theory in Actuarial SciencesJamáriková, Zuzana January 2013 (has links)
This thesis is focused on the models based on extreme value theory and their practical applications. Specifically are described the block maxima models and the models based on threshold exceedances. Both of these methods are described in thesis theoretically. Apart from theoretical description there are also practical calculations based on simulated or real data. The applications of block maxima models are focused on choice of block size, suitability of the models for specific data and possibilities of extreme data analysis. The applications of models based on threshold exceedances are focused on choice of threshold and on suitability of the models. There is an example of the model used for calculations of reinsurance premium for extreme claims in the case of nonproportional reinsurance.
|
8 |
Modelování operačního rizika / Operational risk modellingMináriková, Eva January 2013 (has links)
In the present thesis we will firstly familiarize ourselves with the term of operational risk, it's definition presented in the directives Basel II and Solvency II, and afterwards with the methods of calculation Capital Requirements for Operational Risk, set by these directives. In the second part of the thesis we will concentrate on the methods of modelling operational loss data. We will introduce the Extreme Value Theory which describes possible approaches to modelling data with significant values that occur infrequently; the typical characteristic of operational risk data. We will mainly focus on the model for threshold exceedances which utilizes Generalized Pareto Distribution to model the distribution of those excesses. The teoretical knowledge of this theory and the appropriate modelling will be applied on simulated loss data. Finally we will test the ability of presented methods to model loss data distributions.
|
9 |
[en] CONTAGION AND EXTREMAL INTERDEPENDENCE IN EMERGING MARKETS / [pt] INTERDEPENDÊNCIA EXTREMA E CONTÁGIO EM MERCADOS EMERGENTESRODRIGO GELLI CAVALCANTI 01 June 2007 (has links)
[pt] Nesta dissertação avalia-se o grau de associação entre
pares de excessos de
retornos, simultâneos e defasados no tempo, usando-se o
conceito de cópulas.
Cópulas assimétricas são ajustadas aos pares de
distribuições de retornos e
coeficientes de dependência de cauda, as medidas de
interdependência e contágio
baseadas nessas cópulas, são calculados para 10 pares de
índices de mercados.
Tais coeficientes balizam a escolha do par de ativos com
melhor desempenho
em períodos de estresse. Se excessos defasados são
incluídos, então estes
coeficientes também indicam a direção e intensidade de
propagação das crises
(contágio). Os resultados encontrados na nossa
investigação mostram que a
técnica utilizada é eficaz na montagem de carteiras em que
se pretende aproveitar
os ganhos extremos conjuntos dos ativos e, ao mesmo tempo,
evitar perdas
extremas conjuntas. O uso de retornos defasados, porém,
foi um artifício pouco
producente, refletindo possivelmente o contágio quase
instantâneo entre os
mercados financeiros mundiais, nos dias de hoje. / [en] In this dissertation we evaluate the degree of association
between pairs of
excess of returns, simultaneous and lagged, using the
concept of copulas.
Asymmetric copulas are fitted to 10 pairs of distributions
of returns of world
markets índices. From these copulas coefficients of tail
dependence are obtained
for the right and left tails. Isong those coefficients as
measures of cross
dependence and contagion between markets one can pick the
pair of returns that
show the best performance in periods of stress. If lagged
excess of returns are
included, then these coefficients provide information on
the direction and intensity
of the contagion spread. Our results have shown that such
technique isd efficent in
constructing a portfolio in which one wants to take
advantage of joint extreme
gains of pairs of returns and, simultaneously, avoid
losses associated with the
occurrence of joint negative extremes. The use of lagged
returns in this context
hás shown no extra gain, maybe reflecting the fact that,
nowadays, the spread of
contagion between world financial markets is almost
instantaneous.
|
10 |
Quantification of Uncertainties in Urban Precipitation ExtremesChandra Rupa, R January 2017 (has links) (PDF)
Urbanisation alters the hydrologic response of a catchment, resulting in increased runoff rates and volumes, and loss of infiltration and base flow. Quantification of uncertainties is important in hydrologic designs of urban infrastructure. Major sources of uncertainty in the Intensity Duration Frequency (IDF) relationships are due to insufficient quantity and quality of data leading to parameter uncertainty and, in the case of projections of future IDF relationships under climate change, uncertainty arising from use of multiple General Circulation Models (GCMs) and scenarios. The work presented in the thesis presents methodologies to quantify the uncertainties arising from parameters of the distribution fitted to data and the multiple GCMs using a Bayesian approach. High uncertainties in GEV parameters and return levels are observed at shorter durations for Bangalore City. Twenty six GCMs from the CMIP5 datasets, along with four RCP scenarios are considered for studying the effects of climate change. It is observed that the uncertainty in short duration rainfall return levels is high when compared to the longer durations. Further it is observed that parameter uncertainty is large compared to the model uncertainty. Disaggregation of precipitation extremes from larger time scales to smaller time scales when the extremes are modeled with the GPD is burdened with difficulties arising from varying thresholds for different durations. In this study, the scale invariance theory is used to develop a disaggregation model for precipitation extremes exceeding specified thresholds. A scaling relationship is developed for a range of thresholds obtained from a set of quantiles of non-zero precipitation of different durations. The disaggregation model is applied to precipitation datasets of Berlin City, Germany and Bangalore City, India. From both the applications, it is observed that the uncertainty in the scaling exponent has a considerable effect on uncertainty in scaled parameters and return levels of shorter durations. A Bayesian hierarchical model is used to obtain spatial distribution of return levels of precipitation extremes in urban areas and quantify the associated uncertainty. Applicability of the methodology is demonstrated with data from 19 telemetric rain gauge stations in Bangalore City, India. For this case study, it is inferred that the elevation and mean monsoon precipitation are the predominant covariates for annual maximum precipitation. For the monsoon maximum precipitation, it is observed that the geographic covariates dominate while for the summer maximum precipitation, elevation and mean summer precipitation are the predominant covariates. In this work, variation in the dependence structure of extreme precipitation within an urban area and its surrounding non-urban areas at various durations is studied. The Berlin City, Germany, with surrounding non-urban area is considered to demonstrate the methodology. For this case study, the hourly precipitation shows independence within the city even at small distances, whereas the daily precipitation shows a high degree of dependence. This dependence structure of the daily precipitation gets masked as more and more surrounding non-urban areas are included in the analysis. The geographical covariates are seen to be predominant within the city and the climatological covariates prevail when non-urban areas are added. These results suggest the importance of quantification of dependence structure of spatial precipitation at the sub-daily timescales, as well as the need to more precisely model spatial extremes within the urban areas. The work presented in this thesis thus
contributes to quantification of uncertainty in precipitation extremes through developing methodologies for generating probabilistic future IDF relationships under climate change, spatial mapping of probabilistic return levels and modeling dependence structure of extreme precipitation in urban areas at fine resolutions.
|
Page generated in 0.0455 seconds