Spelling suggestions: "subject:"[een] GENETIC PROGRAMMING"" "subject:"[enn] GENETIC PROGRAMMING""
191 |
Genetické programování - Java implementace / Genetic programming - Java implementationTomaštík, Marek January 2013 (has links)
This Master´s thesis implements computer program in Java, useful for automatic model generating, specially in symbolic regression problem. Thesis includes short description of genetic programming (GP) and own implementation with advanced GP operands (non-destructive operations, elitism, exptression reduction). Mathematical model is generating by symbolic regression, exacly for choosen data set. For functioning check are used test tasks. Optimal settings is found for choosen GP parameters.
|
192 |
Vysokoúrovňové objektově orientované genetické programování pro optimalizaci logistických skladů / High-Level Object Oriented Genetic Programming in Logistic Warehouse OptimizationKarásek, Jan January 2014 (has links)
Disertační práce je zaměřena na optimalizaci průběhu pracovních operací v logistických skladech a distribučních centrech. Hlavním cílem je optimalizovat procesy plánování, rozvrhování a odbavování. Jelikož jde o problém patřící do třídy složitosti NP-težký, je výpočetně velmi náročné nalézt optimální řešení. Motivací pro řešení této práce je vyplnění pomyslné mezery mezi metodami zkoumanými na vědecké a akademické půdě a metodami používanými v produkčních komerčních prostředích. Jádro optimalizačního algoritmu je založeno na základě genetického programování řízeného bezkontextovou gramatikou. Hlavním přínosem této práce je a) navrhnout nový optimalizační algoritmus, který respektuje následující optimalizační podmínky: celkový čas zpracování, využití zdrojů, a zahlcení skladových uliček, které může nastat během zpracování úkolů, b) analyzovat historická data z provozu skladu a vyvinout sadu testovacích příkladů, které mohou sloužit jako referenční výsledky pro další výzkum, a dále c) pokusit se předčit stanovené referenční výsledky dosažené kvalifikovaným a trénovaným operačním manažerem jednoho z největších skladů ve střední Evropě.
|
193 |
Koevoluce obrazových filtrů a prediktorů fitness / Coevolution of Image Filters and Fitness PredictorsTrefilík, Jakub January 2015 (has links)
This thesis deals with employing coevolutionary principles to the image filter design. Evolutionary algorithms are very advisable method for image filter design. Using coevolution, we can add the processes, which can accelerate the convergence by interactions of candidate filters population with population of fitness predictors. Fitness predictor is a small subset of the training set and it is used to approximate the fitness of the candidate solutions. In this thesis, indirect encoding is used for predictors evolution. This encoding represents a mathematical expression, which selects training vectors for candidate filters fitness prediction. This approach was experimentally evaluated in the task of image filters for various intensity of random impulse and salt and pepper noise design and the design of the edge detectors. It was shown, that this approach leads to adapting the number of target objective vectors for a particular task, which leads to computational complexity reduction.
|
194 |
Evoluční návrh pro aproximaci obvodů / Evolutionary Design for Circuit ApproximationDvořáček, Petr January 2015 (has links)
In recent years, there has been a strong need for the design of integrated circuits showing low power consumption. It is possible to create intentionally approximate circuits which don't fully implement the specified logic behaviour, but exhibit improvements in term of area, delay and power consumption. These circuits can be used in many error resilient applications, especially in signal and image processing, computer graphics, computer vision and machine learning. This work describes an evolutionary approach to approximate design of arithmetic circuits and other more complex systems. This text presents a parallel calculation of a fitness function. The proposed method accelerated evaluation of 8-bit approximate multiplier 170 times in comparison with the common version. Evolved approximate circuits were used in different types of edge detectors.
|
195 |
Akcelerace evolučního návrhu obvodů na úrovni tranzistorů na platformě Zynq / Acceleration of Transistor-Level Evolutionary Design of Digital Circuits Using ZynqMrázek, Vojtěch January 2014 (has links)
The goal of this project is to design a hardware unit that is designed to accelerate evolutionary design of digital circuits on transistor level. The project is divided to two parts. The first one describes design methods of the MOSFET circuits and issues of evolutionary algorithms. It also analyses current results in this domain and provides a new method for the design and optimization. The second part describes proposed unit that accelerates the new method on the circuit Zynq which integrates ARM processor and programmable logic. The new method functionality has been empirically analysed in the task of optimization of few circuits with more inputs. The hardware unit has been tested for designing of gates on transistor level.
|
196 |
Evoluční resyntéza kombinačních obvodů / Evolutionary Combinational Circuit ResynthesisPták, Ondřej January 2013 (has links)
This project deals with combinational digital circuits and their optimization. First there are presented main levels of abstraction utilized in the design of combinational digital circuits. Afterwards different methods are surveyed for optimization of combinational digital circuits. The next part of this project is mainly devoted to evolutionary algorithms, their common characteristics and branches: genetic algorithms, evolutionary strategies, evolutionary programming and genetic programming. The variant of genetic programming called Cartesian Genetic Programming (CGP) and the use of CGP in various areas, particularly in the synthesis and optimization of combinational logic circuits are described in detail. The project also discusses some modifications of CGP and the scalability problem of evolutionary circuit design. Consequential part of this thesis describes the method for evolution resynthesis of combinational digital circuits. There is description of design, especially the method of splitting circuits into subcircuits, and implementation details. Finally experiments with these method and their results are described.
|
197 |
Evoluční algoritmy v úloze booleovské splnitelnosti / Evolutionary Algorithms in the Task of Boolean SatisfiabilitySerédi, Silvester January 2013 (has links)
The goal of this Master's Thesis is finding a SAT solving heuristic by the application of an evolutionary algorithm. This thesis surveys various approaches used in SAT solving and some variants of evolutionary algorithms that are relevant to this topic. Afterwards the implementation of a linear genetic programming system that searches for a suitable heuristic for SAT problem instances is described, together with the implementation of a custom SAT solver which expoloits the output of the genetic program. Finally, the achieved results are summarized.
|
198 |
Nástroj pro vizuální analýzu evoluce obvodů / A Tool for Visual Analysis of Circuit EvolutionStaurovská, Jana January 2012 (has links)
The main goal of the master's thesis is to compose a study on cartesian genetic programming with focus on evolution of circuits and to design a concept for visualisation of this evolution. Another goal is to create a program to visualise the circuit evolution in cartesian genetic programming, its generations and chromosomes. The program is capable of visualising the changes between generations and chromosomes and comparing more chromosomes at once. Several user cases had been prepared for the resulting program.
|
199 |
Techniky reprezentace pro evoluční návrh celulárních automatů / Representation Techniques for Evolutionary Design of Cellular AutomataKovács, Martin January 2016 (has links)
The aim of this thesis is to experimentally evaluate the performance of several distinct representations of transition functions for cellular automata. Cellular automata have many potential applications for simulating various phenomena (e.g. natural processes, physical systems, etc.). Parallel computation of cellular automata is based on local cell interactions. Such computation, however, may prove difficult to program the CA, which is the reason for applying evolutionary techniques for the design of cellular automata in many cases. Evolutionary algorithms, based on Darwin's theory of evolution, have been used to find human-competitive solutions to many problems. In order to perform the evolutionary design of cellular automata, special encodings of the candidate solutions are often necessary. For this purpose the performance testing of various representations of the transition functions will be investigated. In particular, table representation, conditionally matching rules, and genetic programming will be treated. The problem of square calculations in cellular automata will be considered as a case study.
|
200 |
Evoluční přístup k syntéze a optimalizaci běžných a polymorfních obvodů / Evolutionary Approach to Synthesis and Optimization of Ordinary and Polymorphic CircuitsGajda, Zbyšek Unknown Date (has links)
Tato disertační práce se zabývá evolučním návrhem a optimalizací jak běžných, tak polymorfních digitálních obvodů. V práci jsou uvedena a vyhodnocena nová rozšíření kartézského genetického programování (Cartesian Genetic Programming, CGP), která umožňují zkrácení výpočetního času a získávání kompaktnějších obvodů. Další část práce se zaměřuje na nové metody syntézy polymorfních obvodů. Uvedené metody založené na polymorfních binárních rozhodovacích diagramech a polymorfním multiplexovaní rozšiřují běžné reprezentace digitálních obvodů, a to s ohledem na začlenění polymorfních hradel. Z důvodu snížení počtu hradel v obvodech syntetizovaných uvedenými metodami je provedena evoluční optimalizace založená na CGP. Implementované polymorfní obvody, které jsou optimalizovány s využitím CGP, reprezentují nejlepší známá řešení, jestliže je jako cílové kritérium brán počet hradel obvodu.
|
Page generated in 0.0852 seconds