• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 327
  • 181
  • 43
  • 30
  • 12
  • 11
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • Tagged with
  • 734
  • 171
  • 169
  • 160
  • 145
  • 112
  • 95
  • 80
  • 56
  • 56
  • 54
  • 53
  • 49
  • 48
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

The functional significance of genetic polymorphisms in human glutathione S-transferases /

Abel, Erika Lammert. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 91-106).
112

The role of glutathione peroxidase 3 (GPx3) : bridging graft injury and tumor invasiveness

Qi, Xiang, 祁翔 January 2014 (has links)
Background and Objective: Severe inflammation resulted from small-for-size liver graft injury provides favorable environment for tumor growth. The oxidative stress not only accelerates the inflammatory response, but also stimulates the proliferation of cancer cells. Therefore, attenuating oxidative stress after liver surgery may not only ameliorate liver injury, but also suppress tumor growth and metastasis. Glutathione peroxidase 3 (GPx3) is an anti-oxidant which has been reported to be down-regulated in several types of cancer. Here, we aimed to investigate the clinical significance of GPx3 and characterize the role of GPx3 in liver graft injury and hepatocellular carcinoma (HCC). Furthermore, we intended to explore the therapeutic value of GPx3 using hiPSC-MSCs as a delivery vehicle in hepatic ischemia-reperfusion injury and HCC. Materials and methods: To investigate the clinical significance of GPx3, the HCC patients underwent liver transplantation (106 recipients) or hepatectomy (113 patients) were recruited to study the correlation of GPx3 with clinical parameters. To explore the mechanism of GPx3 in liver graft injury, simulated IR injury model and rat liver transplantation model were applied. To examine the effect of GPx3 on HCC, rGPx3 administration and forced-expression of GPx3 within HCC cells were performed in vitro and in vivo. To explore the therapeutic value of GPx3, engineered hiPSC-MSCs delivering GPx3 was established and applied in mice hepatic IR injury model and nude mice liver cancer model. Results: I. The role of GPx3 in graft injury. The intra-graft GPx3 expression was significantly down-regulated in small-for-size graft accompanied with severe graft injury in a rat liver transplantation model. Clinically, the lower plasma GPx3 was mainly observed in the recipients with small-for-size liver graft. Furthermore, the lower plasma GPx3 significantly correlated with higher tumor recurrence post-transplantation. The down-regulation of GPx3 was associated with hepatic senescence in small-for-size graft. GPx3 treatment delivered by hiPSC-MSCs could significantly ameliorated hepatic IR injury through inhibition of macrophages activation followed by decreased production of ROS, TNFα and IL-1. II. The role of GPx3 in HCC. Down-regulation of GPx3 in liver tumor was observed in half of HCC patients (56/113). It significantly correlated with advanced pTNM stage (P = 0.024), presence of venous infiltration (P =0.043) and high AFP level (P = 0.006). The one year (P = 0.038) and five year (P = 0.019) recurrence rate were significantly higher in the patients with lower GPx3 expression. In functional study, rGPx3 administration and over-expression of GPx3 significantly suppressed proliferation and invasiveness of HCC cells in vitro and in vivo. The tumor suppressive activity of GPx3 was mediated by inhibition of EMT through Erk-NFκB-SIP1 pathway. The GPx3 treatment delivered by hiPSC-MSCs could significantly inhibit proliferation of MHCC97L. Conclusions: I. Down-regulation of GPx3 was associated with small-for-size graft injury. Low circulating GPx3 at early phase after transplantation predicted higher tumor recurrence of HCC recipients. II. Down-regulation of GPx3 indicated poor prognosis of HCC patients. GPx3 suppressed tumor growth and invasiveness by inhibition of EMT through Erk-NFκB-SIP1 pathway. III. Engineered hiPSC-MSCs delivering GPx3 may possess therapeutic value in liver graft injury and HCC. / published_or_final_version / Surgery / Doctoral / Doctor of Philosophy
113

The role of glutathione depletion in skeletal muscle apoptotic signalling in young and old rats

Lalonde, Crystal January 2010 (has links)
There is substantial evidence that oxidative stress causes negative outcomes in many cell and tissue types. This is especially true of skeletal muscle, as it is continually subjected to various sources of reactive oxygen species (ROS). Oxidative stress in muscle has been linked to several disease states as well as to the normal aging process. Oxidative stress has also been associated with increased apoptotic signalling. Furthermore, elevated apoptosis is consistently observed in aged skeletal muscle and is thought to be one of the mechanisms of age-related muscle atrophy. Due to its post-mitotic nature, skeletal muscle may be more susceptible to the harmful effects of oxidative stress in light of its limited regenerative capacity. As a protective measure, a sophisticated antioxidant system exists in muscle consisting of both enzymatic (superoxide dismutases (SOD’s), catalase, glutathione peroxidase) and non-enzymatic elements (glutathione: GSH). GSH is a ubiquitously expressed tripeptide essential to maintenance of the redox status of the cell. Its role in skeletal muscle apoptosis, especially in different muscle types, is currently unclear. To elucidate the potential role of GSH in skeletal muscle apoptosis and oxidative stress, L-buthionine-[S,R]-sulfoximine (BSO) was used to deplete GSH in young (34.85 ± 0.68 wks) and old (69.11 ± 3.61 wks) male Sprague-Dawley rats. Thiol levels (GSH, GSSG), ROS production, 4-hydroxy-2-nonenal (4HNE) levels, DNA fragmentation and apoptosis-related protein expression were examined in soleus (SOL) and white gastrocnemius (WG) muscle. BSO led to significant GSH depletion (89% in SOL, 96% in WG) compared to age-matched controls. Catalase upregulation, in the absence of change in SOD levels, was evident as a result of BSO treatment and advancing age in both muscle tissues. BSO treatment also resulted in increased DNA fragmentation in WG and SOL, with elevated ROS production in SOL only; both of these effects were independent of age. Advancing age resulted in elevated caspase activity and Hsp70 protein content, with a concomitant decrease in anti-apoptotic ARC in SOL but not WG. Additionally, ROS production, 4HNE content, DNA fragmentation and ARC levels were all significantly elevated in SOL compared to WG. These data indicate that SOL may be subjected to a state of elevated cellular stress. There is also some evidence that GSH depletion increases DNA fragmentation while age contributes to a degradative loss of glycolytic muscle.
114

Donor Substrate Specificity of Bovine Kidney Gamma-Glutamyltransferase

Agblor, Anita 14 December 2012 (has links)
Mammalian γ-glutamyltransferase (GGT) is a glycoprotein consisting of two subunits - a light chain and a heavy chain. The light chain contains the catalytic activity; the heavy chain anchors the protein to the membrane. GGT catalyzes the hydrolysis of the γ-glutamyl isopeptide bond of glutathione conjugates, releasing glutamic acid, or the transfer of the γ-glutamyl group to an acceptor substrate. The specificity of the enzyme for xenobiotic donor substrates has not been fully characterized. The transpeptidation activity of bovine kidney GGT was measured with glycylglycine as acceptor substrate and several glutathione conjugate donor substrates, representative of detoxication products of polycyclic aromatic xenobiotics. HPLC separation with UV detection was used for quantitation. The commonly-used chromogenic donor substrate γ-glutamyl-p-nitroanilide was also tested. Michaelis constants (Km) were obtained for γ-glutamyl-p-nitroanilide (0.74 mM), 4-nitrobenzyl glutathione (0.075 mM), 2,4-dinitrophenyl glutathione (0.30 mM), 4-methylbiphenylyl glutathione (0.12 mM), 1-menaphthyl glutathione (0.23 mM), and 9-methylanthracenyl glutathione (0.22 mM), indicating that enzyme activity is affected, but not strongly, by the nature of the S-substituent attached to glutathione, and there is a slight trend of higher Km values with bulkier aromatic S-substituents.
115

Models of oxidative stress induced by disease or pollution in invertebrates and vertebrates

Meigh, Heather Clare January 2000 (has links)
Glutathione and its related enzymes have a central role in the antioxidant mechanisms of both invertebrates and vertebrates. Evidence suggests that changes in antioxidant defence mechanisms are associated with the late complications of diabetes. In addition, invertebrates show changes in antioxidant mechanisms in response to contamination; these changes have the potential to be utilised in the environmental monitoring of pollution. The present study investigated the role of glutathione and its related enzymes with regard to complications of diabetes and toxicity exposure using the crab, Carcinus maenas. A preliminary investigation showed that glutathione peroxidase and glutathione reductase activities are unaltered in the peripheral blood mononuclear cells from diabetic patients with long term complications of the disease. However, crabs were shown to have significantly reduced glutathione-s-transferase and glutathione peroxidase activities in response to cadmium exposure. The biochemical responses of crabs to pollution exposure were investigated in further experiments. Crabs are exposed to a variety of influences within their natural environment that may affect their ability to tolerate oxidative stress. These stressors include climatic changes, age, sex, nutritional status, contamination, accumulation of toxins and adaptation to a polluted environment. Results showed that seasonality also affects the activities of glutathione related enzymes glutathione reductase and glutathione-s-transferase, as well as physiological parameters such as tissue protein composition. Seasonal changes of enzyme activities may be partly due to the altered nutritional status of the crab over the year. Nutritional status also reduced the total glutathione status and total antioxidant scavenging ability of crab haemolymph and gill tissues. The levels of these parameters were reinstated to normal when the starved crabs were exposed to a mixed affluent. The ability to control the production of antioxidant scavenging compounds during fasting may help to preserve the crabs energy reserves. The promptly reinstated glutathione and total antioxidant scavenging ability in response to contamination helps to prevent the oxidative damage caused by pollution exposure. Several tissues were removed from the crab and the amount that each contributed to the crabs overall antioxidant scavenging ability was calculated. Haemolymph and muscle tissues were found to contribute the most to the crabs overall antioxidant scavenging ability. This is due to the large proportion of the crab that these tissues occupy. The level of glutathione within the crabs haemolymph, gill and muscle tissues did not contribute significantly to their overall antioxidant scavenging ability in normal conditions. However, when the stress was induced in the crabs in response to mixed effluent exposure or fasting, total glutathione levels became significantly correlated with total antioxidant scavenging ability. The results suggest that under these circumstances glutathione levels are maintained by the activity of glutathione reductase. A field trial was performed in the highly industrialised area of the Tees Estuary to establish whether the biomarkers that had been successfully applied in laboratory experiments could be used within the field. The results were analysed using multi-dimensional scaling techniques. This allowed a suite of biomarkers to be analysed simultaneously. The biomarker responses measured at the different sites indicated a gradient of toxicity from the top of the estuary to its mouth. These results were consistent with water chemical analysis data. The study showed that more information could be gained from this type of analysis than by examining the biomarker results separately. The biomarkers measured and the method of data analysis have potential to be used in routine toxicity assessment.
116

Transmembrane Electron Transport Systems in Erythrocyte Plasma Membranes

Kennett, Eleanor January 2005 (has links)
Electron transport systems exist in the plasma membranes of all cells. Although not well characterised they play roles in cell growth and proliferation, hormone responses and other cell signalling events, but perhaps their most important role, especially in erythrocytes, is enabling the cell to respond to changes in both intra- and extracellular redox environments. Human erythrocytes possess a transmembrane electron transport capability that mediates the transfer of reducing equivalents from reduced intracellular species to oxidised extracellular species and is concomitant with proton extrusion. In the work for this thesis I showed that erythrocyte membranes contain a transmembrane WST-1 (water soluble tetrazolium-1) reductase activity that uses reducing equivalents from intracellular NADH to reduce extracellular WST-1. The rate of WST-1 reduction was increased by the presence of phenazine methosulfate and, although of low activity, it showed similar properties to a previously reported transmembrane NADH-oxidase activity. 1H NMR experiments showed that WST-1 was reversibly bound to the membrane and/or proteins in the membrane within the timeframe of the NMR experiment, confirming the location of the WST-1 reduction. Preliminary attempts to purify NADH:WST-1 reductase and NADH:ferricyanide reductase activities from the erythrocyte plasma membrane were inconclusive. The protein(s) responsible for the reduction of these oxidants appear to be of low abundance in the plasma membrane and may be part of a larger protein complex. Further work on the isolation of these redox activities is required before the protein(s) involved can be identified with any confidence. The ability of cells to export electrons suggests that an electron import mechanism might also exist to re-establish the cell�s redox-buffering equilibrium under conditions of oxidative stress. This hypothesis was tested in glucose-deprived erythrocytes using reduced glutathione and NADH as extracellular electron donors. It was shown that neither reduced glutathione nor NADH donated reducing equivalents through a transmembrane redox system. Extracellular NADH was, however, able to produce profound changes in starvation metabolism and methaemoglobin reduction rates. The addition of extracellular NADH caused a six-fold increase in the rate of lactate production above that observed in glucose-starved controls, together with a concomitant decrease in pyruvate production. In erythrocytes containing high levels of methaemoglobin, extracellular NADH increased the rate of methaemoglobin reduction in both the presence and absence of glucose. These results were explained by the leakage of lactate dehydrogenase from erythrocytes due to an admittedly low level of haemolysis. This caused the displacement of the intracellular pseudo-equilibrium of the lactate dehydrogenase reaction via transmembrane exchange of lactate, allowing the conversion of extracellular pyruvate to lactate and resulted in an increase in intracellular NADH concentrations. The latter increased the rate of methaemoglobin reduction. In conclusion, the work described in this thesis showed that erythrocyte membranes do not contain mechanisms for importing electrons or reducing equivalents from extracellular reduced glutathione or NADH. Erythrocytes do, however, contain an electron export system which can reduce extracellular oxidants such as WST-1 and the activity of this system depends on an intricate balance between intracellular antioxidants and enzyme activities. There is much still to be learnt about plasma membrane redox systems, little is known, for example, about the protein composition, mechanism of action, and the in vivo conditions under which these systems are most active.
117

Exploring the functional plasticity of human glutathione transferases : allelic variants, novel isoenzyme and enzyme redesign /

Johansson, Ann-Sofie. January 2002 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2002. / Härtill 6 uppsatser.
118

Molecular aspects of glutathione synthetase deficiency /

Njålsson, Runa Viđarr, January 1900 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 5 uppsatser.
119

Glutathione depletion induces cell death in human NT2 cells : implications for Parkinson's disease /

Byrd, Angèle, January 1900 (has links)
Thesis (M. Sc.)--Carleton University, 2003. / Includes bibliographical references (p. 165-187). Also available in electronic format on the Internet.
120

Mechanisms of methylmercury-induced toxicity in primary embryonic CNS cells : the role of cell cycle regulatory genes and glutathione /

Ou, Ying-Chung. January 1997 (has links)
Thesis (Ph. D.)--University of Washington, 1997. / Vita. Includes bibliographical references (leaves [148]-164).

Page generated in 0.0396 seconds