• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 10
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

BSO - Broad System of Ordering: an international bibliography

Kawamura, Keiichi 03 1900 (has links)
The book was originally prepared for publishing in print. The author has decided to make it available as an online edition / This bibliography,compiled by K. Kawamura, lists about 270 references to BSO ranging from 1973 to 2010. The number of languages covered in the bibliography is 19 in all: Arabic, Chinese, Croatian, Czech, Dutch, English, French, German, Hungarian, Italian, Japanese, Korean, Lithuanian, Polish, Portuguese, Russian, Slovak, Slovenian and Spanish. Every item has English abstract and/or annotation. Items are arranged in systematic order, and cross-references among related items as well as author and language indexes complement the systematic arrangement.
2

The role of glutathione depletion in skeletal muscle apoptotic signalling in young and old rats

Lalonde, Crystal January 2010 (has links)
There is substantial evidence that oxidative stress causes negative outcomes in many cell and tissue types. This is especially true of skeletal muscle, as it is continually subjected to various sources of reactive oxygen species (ROS). Oxidative stress in muscle has been linked to several disease states as well as to the normal aging process. Oxidative stress has also been associated with increased apoptotic signalling. Furthermore, elevated apoptosis is consistently observed in aged skeletal muscle and is thought to be one of the mechanisms of age-related muscle atrophy. Due to its post-mitotic nature, skeletal muscle may be more susceptible to the harmful effects of oxidative stress in light of its limited regenerative capacity. As a protective measure, a sophisticated antioxidant system exists in muscle consisting of both enzymatic (superoxide dismutases (SOD’s), catalase, glutathione peroxidase) and non-enzymatic elements (glutathione: GSH). GSH is a ubiquitously expressed tripeptide essential to maintenance of the redox status of the cell. Its role in skeletal muscle apoptosis, especially in different muscle types, is currently unclear. To elucidate the potential role of GSH in skeletal muscle apoptosis and oxidative stress, L-buthionine-[S,R]-sulfoximine (BSO) was used to deplete GSH in young (34.85 ± 0.68 wks) and old (69.11 ± 3.61 wks) male Sprague-Dawley rats. Thiol levels (GSH, GSSG), ROS production, 4-hydroxy-2-nonenal (4HNE) levels, DNA fragmentation and apoptosis-related protein expression were examined in soleus (SOL) and white gastrocnemius (WG) muscle. BSO led to significant GSH depletion (89% in SOL, 96% in WG) compared to age-matched controls. Catalase upregulation, in the absence of change in SOD levels, was evident as a result of BSO treatment and advancing age in both muscle tissues. BSO treatment also resulted in increased DNA fragmentation in WG and SOL, with elevated ROS production in SOL only; both of these effects were independent of age. Advancing age resulted in elevated caspase activity and Hsp70 protein content, with a concomitant decrease in anti-apoptotic ARC in SOL but not WG. Additionally, ROS production, 4HNE content, DNA fragmentation and ARC levels were all significantly elevated in SOL compared to WG. These data indicate that SOL may be subjected to a state of elevated cellular stress. There is also some evidence that GSH depletion increases DNA fragmentation while age contributes to a degradative loss of glycolytic muscle.
3

The role of glutathione depletion in skeletal muscle apoptotic signalling in young and old rats

Lalonde, Crystal January 2010 (has links)
There is substantial evidence that oxidative stress causes negative outcomes in many cell and tissue types. This is especially true of skeletal muscle, as it is continually subjected to various sources of reactive oxygen species (ROS). Oxidative stress in muscle has been linked to several disease states as well as to the normal aging process. Oxidative stress has also been associated with increased apoptotic signalling. Furthermore, elevated apoptosis is consistently observed in aged skeletal muscle and is thought to be one of the mechanisms of age-related muscle atrophy. Due to its post-mitotic nature, skeletal muscle may be more susceptible to the harmful effects of oxidative stress in light of its limited regenerative capacity. As a protective measure, a sophisticated antioxidant system exists in muscle consisting of both enzymatic (superoxide dismutases (SOD’s), catalase, glutathione peroxidase) and non-enzymatic elements (glutathione: GSH). GSH is a ubiquitously expressed tripeptide essential to maintenance of the redox status of the cell. Its role in skeletal muscle apoptosis, especially in different muscle types, is currently unclear. To elucidate the potential role of GSH in skeletal muscle apoptosis and oxidative stress, L-buthionine-[S,R]-sulfoximine (BSO) was used to deplete GSH in young (34.85 ± 0.68 wks) and old (69.11 ± 3.61 wks) male Sprague-Dawley rats. Thiol levels (GSH, GSSG), ROS production, 4-hydroxy-2-nonenal (4HNE) levels, DNA fragmentation and apoptosis-related protein expression were examined in soleus (SOL) and white gastrocnemius (WG) muscle. BSO led to significant GSH depletion (89% in SOL, 96% in WG) compared to age-matched controls. Catalase upregulation, in the absence of change in SOD levels, was evident as a result of BSO treatment and advancing age in both muscle tissues. BSO treatment also resulted in increased DNA fragmentation in WG and SOL, with elevated ROS production in SOL only; both of these effects were independent of age. Advancing age resulted in elevated caspase activity and Hsp70 protein content, with a concomitant decrease in anti-apoptotic ARC in SOL but not WG. Additionally, ROS production, 4HNE content, DNA fragmentation and ARC levels were all significantly elevated in SOL compared to WG. These data indicate that SOL may be subjected to a state of elevated cellular stress. There is also some evidence that GSH depletion increases DNA fragmentation while age contributes to a degradative loss of glycolytic muscle.
4

Crescimento e caracterização de monocristais fotorreativos: BSO e BTO / Growth and characterization of BSO and BTO photorefractive single crystals

Carvalho, Jesiel Freitas 10 May 1994 (has links)
Neste trabalho crescemos monocristais de Bi12SiO20 (BSO) e de Bi12TiO20 (BTO). Os cristais de BSO foram crescidos pela técnica de Czochralski a partir da fase líquida com composição molar 6Bi2O3:1SiO2. Os melhores resultados foram obtidos para taxas de puxamento entre 1 e 2,5mm/h, a velocidade de rotação foi mantida constante em 20rpm. Os cristais de BTO foram crescidos pelo método top-seeded solution Growth (TSSG) a partir da composição molar 10Bi2O3:1SiO2, com taxas de puxamento menores que 0,3mm/h e velocidade de rotação entre 16 e 30 rpm. A qualidade dos cristais foi avaliada utilizando microscopia óptica e eletrônica, corrosão seletiva e raios-x. Por microscopia óptica identificamos os defeitos macroscópicos e discutimos sua natureza e possíveis causas. Utilizando a técnica de ataque químico seletivo, analisamos a morfologia das figuras de ataque e estimamos a densidade de deslocações. Visando identificar defeitos de estequiometria, fizemos medidas de composição por microanálise eletrônica. Para a caracterização cristalográfica, calculamos o parâmetro de rede por difração de raios-x usando o método do pó e confirmamos a estrutura cristalográfica através do método de Rietveld. E, ainda, medimos a atividade óptica que é uma constante característica dos cristais. / In this work we grew Bi12SiO20 (BSO) and Bi12TiO20 single crystals. The BSO crystals have been grown from the melt composition of 6Bi2O3:1SiO2 by the Czochralski method. The best results were obtained at pulling rates from 1 to 2.5m/h, the rotation rate of 20rpm was constant. The BTO crystals have been grown by the top-seeded solution growth technique from a 10Bi2O3:1SiO2 solution with pulling rates less than 0.3mm/h and rotation rates from 16 to 30rpm. The crystal quality was examined by optical and scanning electron microscopy, selective etching, and x-ray diffraction. We identified the macroscopic defects by optical microscopy and discussed their nature and probable origin. Using selective etching, we analyzed the etching pits morphology and evaluated the dislocation density. To identify stoichiometric defects, composition measurements by electron probe microanalysis were made. To obtain crystallographic characterization, we calculated the cell parameter by powder method x-ray diffraction and used the Rietveld method to verify the crystallographic structure. And, also, we measured the optical activity, a constant of the crystals.
5

Crescimento e caracterização de monocristais fotorreativos: BSO e BTO / Growth and characterization of BSO and BTO photorefractive single crystals

Jesiel Freitas Carvalho 10 May 1994 (has links)
Neste trabalho crescemos monocristais de Bi12SiO20 (BSO) e de Bi12TiO20 (BTO). Os cristais de BSO foram crescidos pela técnica de Czochralski a partir da fase líquida com composição molar 6Bi2O3:1SiO2. Os melhores resultados foram obtidos para taxas de puxamento entre 1 e 2,5mm/h, a velocidade de rotação foi mantida constante em 20rpm. Os cristais de BTO foram crescidos pelo método top-seeded solution Growth (TSSG) a partir da composição molar 10Bi2O3:1SiO2, com taxas de puxamento menores que 0,3mm/h e velocidade de rotação entre 16 e 30 rpm. A qualidade dos cristais foi avaliada utilizando microscopia óptica e eletrônica, corrosão seletiva e raios-x. Por microscopia óptica identificamos os defeitos macroscópicos e discutimos sua natureza e possíveis causas. Utilizando a técnica de ataque químico seletivo, analisamos a morfologia das figuras de ataque e estimamos a densidade de deslocações. Visando identificar defeitos de estequiometria, fizemos medidas de composição por microanálise eletrônica. Para a caracterização cristalográfica, calculamos o parâmetro de rede por difração de raios-x usando o método do pó e confirmamos a estrutura cristalográfica através do método de Rietveld. E, ainda, medimos a atividade óptica que é uma constante característica dos cristais. / In this work we grew Bi12SiO20 (BSO) and Bi12TiO20 single crystals. The BSO crystals have been grown from the melt composition of 6Bi2O3:1SiO2 by the Czochralski method. The best results were obtained at pulling rates from 1 to 2.5m/h, the rotation rate of 20rpm was constant. The BTO crystals have been grown by the top-seeded solution growth technique from a 10Bi2O3:1SiO2 solution with pulling rates less than 0.3mm/h and rotation rates from 16 to 30rpm. The crystal quality was examined by optical and scanning electron microscopy, selective etching, and x-ray diffraction. We identified the macroscopic defects by optical microscopy and discussed their nature and probable origin. Using selective etching, we analyzed the etching pits morphology and evaluated the dislocation density. To identify stoichiometric defects, composition measurements by electron probe microanalysis were made. To obtain crystallographic characterization, we calculated the cell parameter by powder method x-ray diffraction and used the Rietveld method to verify the crystallographic structure. And, also, we measured the optical activity, a constant of the crystals.
6

Vliv inhibitorů BSO, Lycorine a AIP na biosyntézu sekundárních metabolitů jednobuněčné řasy Scenedesmus quadricauda

Rankić, Ivan January 2018 (has links)
The theoretical overview summarize the characteristics of algae and their primary and secondary metabolism. It also deals with inhibitors of ascorbic acid, glutathione and polyphenolic compounds synthesis. The practical part studies the influence of selected inhibitors (BSO, Lyc, AIP) and CdCl2 on the secondary metabolites production and biomass growth in freshwater microalgae Scenedesmus quadricauda. The content of secondary metabolites (eg. caffeic acid, chlorogenic acid, salicylic acid, cinnamic acid, p-coumaric acid) was detected by HPLC-MS. Furthermore, the total antioxidant capacity, the total polyphenol content and the total flavonoid content was determined spectrophotometrically. All the inhibitors used, reduced S. quadricauda growth in comparison with control samples. The most pronounced inhibitory effect was observed in the samples treated with Lyc + Cd after 7 days of experiment. All the treated samples responded to the stress factors by altering metabolic pathways and inhibiting growth. As a result, there were changes in the composition and the amount of selected secondary metabolites versus the control samples. At the same time, in most cases, the biosynthesis of polyphenolic and flavonoid substances has been stimulated. The oxidative reduction equilibrium and the induction of oxidative stress were probably impaired.
7

Radiosensitizing glioblastoma in a rat model using l-buthionine-sr-sulfoximine (BSO)

Ataelmannan, Khalid Ali 21 April 2008
Glioblastoma multiforme (GBM) is the most aggressive and most common primary brain tumor in adults accounting for 50-60% of primary brain tumors. The prognosis for patients with GBM remains poor and treatment is mainly palliative with a mean survival time of less than one year. Radiotherapy is used extensively in the management of glioblastoma either alone or in combination with surgery and/or chemotherapy. However, this tumor is one of the most resistant tumors to radiotherapy thus limiting the benefit of this form of treatment. <p>Studies have shown that malignant tumors have a high content of glutathione an antioxidant responsible for protecting the cells against damage from free radicals (mainly superoxide, hydroxyl and hydrogen peroxide). It is well established that glutathione, by neutralizing these free radicals plays a major role in radioresistance. Glioblastoma has relatively high levels of glutathione. In this study, by reducing the glutathione content of glioblastoma in a rat model, we were able to investigate the effect of this reduction in enhancing the effect of radiotherapy as a form of treatment for glioblastoma multiforme in a rat model. <p>By injecting L-Buthionine-SR-Sulfoximine (BSO) in to the tumor tissue, the glutathione content of the tumor was reduced by about 70% of its initial value. When administered into the tumors 2 hours prior to radiotherapy the animals so treated had a significantly longer median survival time compared with animals that received radiotherapy alone.
8

Radiosensitizing glioblastoma in a rat model using l-buthionine-sr-sulfoximine (BSO)

Ataelmannan, Khalid Ali 21 April 2008 (has links)
Glioblastoma multiforme (GBM) is the most aggressive and most common primary brain tumor in adults accounting for 50-60% of primary brain tumors. The prognosis for patients with GBM remains poor and treatment is mainly palliative with a mean survival time of less than one year. Radiotherapy is used extensively in the management of glioblastoma either alone or in combination with surgery and/or chemotherapy. However, this tumor is one of the most resistant tumors to radiotherapy thus limiting the benefit of this form of treatment. <p>Studies have shown that malignant tumors have a high content of glutathione an antioxidant responsible for protecting the cells against damage from free radicals (mainly superoxide, hydroxyl and hydrogen peroxide). It is well established that glutathione, by neutralizing these free radicals plays a major role in radioresistance. Glioblastoma has relatively high levels of glutathione. In this study, by reducing the glutathione content of glioblastoma in a rat model, we were able to investigate the effect of this reduction in enhancing the effect of radiotherapy as a form of treatment for glioblastoma multiforme in a rat model. <p>By injecting L-Buthionine-SR-Sulfoximine (BSO) in to the tumor tissue, the glutathione content of the tumor was reduced by about 70% of its initial value. When administered into the tumors 2 hours prior to radiotherapy the animals so treated had a significantly longer median survival time compared with animals that received radiotherapy alone.
9

Mechanisms of over-active endothelium-derived contracting factor signaling causing common carotid artery endothelial vasomotor dysfunction in hypertension and aging

Denniss, Steven January 2011 (has links)
Background and Purpose: The endothelium is a single-cell layer positioned at the blood-vascular wall interface, where in response to blood-borne signals and hemodynamic forces, endothelial cells act as central regulators of vascular homeostatic processes including vascular tone, growth and remodeling, inflammation and adhesion, and blood fluidity and coagulation. Agonist- or flow-stimulated endothelium-dependent vasorelaxation becomes impaired in states of cardiovascular disease (CVD) risk and has been identified as a possible biomarker of overall endothelial dysfunction leading to vascular dysregulation and disease pathogenesis. Accordingly, it is important to elucidate the mechanisms accounting for this endothelial vasomotor dysfunction. Upon stimulation, endothelial cells can synthesize and release a variety of endothelium-derived relaxing factors (EDRFs), the most prominent of which is nitric oxide (NO) derived from NO synthase (NOS). In addition, under certain CVD risk conditions including hypertension and aging, stimulated endothelial cells can become a prominent source of endothelium-derived contracting factors (EDCFs) produced in a cyclooxygenase (COX)-dependent manner. Consequently, endothelial dysfunction may be caused by under-active EDRF signaling and/or competitive over-active EDCF signaling. Much attention has been given to elucidating the mechanisms of under-active EDRF signaling and its role in causing endothelial dysfunction, wherein excess reactive oxygen species (ROS) accumulation and oxidative stress under CVD risk conditions have been recognized as major factors in reducing NO bioavailability thus causing under-active EDRF signaling and endothelial dysfunction. Less attention however, has been given to elucidating the mechanisms of over-active COX-mediated EDCF signaling and its role in causing endothelial dysfunction. Moreover, while COX-mediated EDCF signaling activity has been investigated in some segments of the vasculature, most notably the aorta, it has not been well-investigated in the common carotid artery (CCA), a highly accessible cerebral blood flow conduit particularly advantageous in exploring the roles of the endothelium in vascular pathogenesis. It was the global purpose of this thesis to gain a better understanding of the cellular-molecular mechanisms accounting for endothelial dysfunction in the CCA of animal models known to exhibit COX-mediated EDCF signaling activity, in particular essential (spontaneous) hypertension and aging. Experimental Objective and Approach: This thesis comprises three studies. Study I and Study II investigated the CCA of young-adult (16-24wk old) normotensive Wistar Kyoto (WKY) and Spontaneously Hypertensive (SHR) rats. Study III investigated the CCA of Adult (25-36wks old) and Aging (60-75wks old) Sprague Dawley (SD) rats treated in vivo (or not; CON) with L-buthionine sulfoximine (BSO) to chronically deplete the cellular anti-oxidant glutathione (GSH) and increase ROS accumulation and oxidative stress. The global objective and approach across these studies was to systematically examine the relative contributions of NOS and COX signaling pathways in mediating the acetylcholine (ACh)-stimulated endothelium-dependent relaxation (EDRF) and contractile (EDCF) activities of isometrically-mounted CCA in tissue baths in vitro, with a particular focus on elucidating the mechanisms of COX-mediated EDCF signaling activity. An added objective was to examine the in vivo hemodynamic characteristics of the CCA in each animal model investigated, serving both to identify the pressure-flow environment that the CCA is exposed to in vivo and to provide assessment of potential hypertension, aging, and oxidative stress effects on large artery hemodynamics. Key Findings: Study I hemodynamic analysis confirmed a hypertensive state in young adult SHR while also exposing a reduction in mean CCA blood flow in SHR compared to WKY accompanied by a multi-faceted pressure-flow interaction across the cardiac cycle relating to flow and pressure augmentation. Study III hemodynamic analysis found that neither aging nor chronic BSO-induced GSH depletion affected CCA blood pressure or blood flow parameters in SD rats. Study I and II demonstrated that a COX-mediated EDCF response impaired ACh-stimulated endothelium-dependent vasorelaxation in pre-contracted CCA from young adult SHR, while EDRF signaling activity, predominantly mediated by NO, remained well-preserved compared to WKY. Examining ACh-stimulated contractile function specifically from a quiescent (non pre-contracted) state revealed that EDCF activity did exist in WKY CCA but could be completely suppressed by NO-mediated EDRF signaling activity, whereas the similarly robust NO-meditated EDRF signaling activity in SHR CCA could not fully suppress its >2-fold augmented EDCF activity vs. WKY CCA. Further pharmaco-dissection of ACh-stimulated contractile function in the SHR-WKY CCA model revealed that the EDCF signaling activity was completely dependent on the COX-1 (but not COX-2) isoform of COX and was almost exclusively mediated by the thromboxane-prostanoid (TP) sub-type of the prostaglandin (PG) G-protein coupled receptor family and by Rho-associated kinase (ROCK), a down-stream effector of the molecular switch RhoA. Furthermore, it was found that while exogenous ROS-stimulated CCA contractile function was similarly >2-fold augmented in SHR vs. WKY and dependent on COX-1 and TP receptor and ROCK effectors, ACh-stimulated CCA EDCF signaling activity was only minimally affected by in-bath ROS manipulating compounds. Additional biochemical and molecular analysis revealed that ACh stimulation was associated with PG over-production from an over-expressed COX-1 in SHR CCA, and with CCA plasma membrane localization and activation of RhoA. Study III demonstrated that a COX-mediated EDCF response impaired ACh-stimulated endothelium-dependent vasorelaxation in pre-contracted CCA from Aging SD rats, while EDRF signaling activity, predominantly mediated by NO, remained well-preserved compared to Adult SD rats. Specific examination of ACh-stimulated contractile function revealed that EDCF activity did exist in Adult CCA but could be completely suppressed by NO-mediated EDRF signaling activity, whereas the similarly robust NO-meditated EDRF signaling activity in Aging CCA could not fully suppress its >3-fold augmented EDCF activity vs. Adult CCA. Further pharmaco-dissection of ACh-stimulated contractile function in the Adult-Aging SD rat CCA model revealed that EDCF signaling activity was completely dependent on COX-1, but while exogenous ROS was able to elicit a COX-dependent CCA contractile response, in-bath ROS manipulating compounds were found to be without effect on ACh-stimulated CCA EDCF signaling activity. Furthermore, biochemical analysis revealed that aging was not associated with a change in tissue (liver and vascular) GSH content or ROS accumulation. Chronic in vivo BSO treatment was effective in depleting tissue GSH content and increasing ROS accumulation, to a similar extent, in both Adult and Aging SD rats. However, regardless of age, neither ACh-stimulated NO-mediated EDRF signaling activity nor COX-mediated EDCF signaling activity were affected by these BSO-induced perturbations. Conclusions and Perspective: In the CCA of animals at the early pathological stages of either essential hypertension (young adult SHR) or normotensive aging (Aging SD rats), endothelial vasomotor dysfunction can be caused solely by over-active EDCF signaling, apparently disconnected from changes in NO bioavailability or oxidative stress. While NO and ROS may act, respectively, as negative and positive modulators of the established COX-PG-TP receptor-RhoA-ROCK cell-signaling axis mediating endothelium-dependent contractile activity, these factors do not appear to be essential to the mechanism(s) underlying the development of over-active EDCF signaling. Further elucidation of the cellular-molecular causes of over-active EDCF signaling, and its patho-biological consequences, in the SHR-WKY and Adult-Aging SD rat CCA models of EDCF activity established and hemodynamically characterized in this thesis, may help to identify new or more effective targets to be used in prevention or treatment strategies to combat the pathogenesis of CVD.
10

Mechanisms of over-active endothelium-derived contracting factor signaling causing common carotid artery endothelial vasomotor dysfunction in hypertension and aging

Denniss, Steven January 2011 (has links)
Background and Purpose: The endothelium is a single-cell layer positioned at the blood-vascular wall interface, where in response to blood-borne signals and hemodynamic forces, endothelial cells act as central regulators of vascular homeostatic processes including vascular tone, growth and remodeling, inflammation and adhesion, and blood fluidity and coagulation. Agonist- or flow-stimulated endothelium-dependent vasorelaxation becomes impaired in states of cardiovascular disease (CVD) risk and has been identified as a possible biomarker of overall endothelial dysfunction leading to vascular dysregulation and disease pathogenesis. Accordingly, it is important to elucidate the mechanisms accounting for this endothelial vasomotor dysfunction. Upon stimulation, endothelial cells can synthesize and release a variety of endothelium-derived relaxing factors (EDRFs), the most prominent of which is nitric oxide (NO) derived from NO synthase (NOS). In addition, under certain CVD risk conditions including hypertension and aging, stimulated endothelial cells can become a prominent source of endothelium-derived contracting factors (EDCFs) produced in a cyclooxygenase (COX)-dependent manner. Consequently, endothelial dysfunction may be caused by under-active EDRF signaling and/or competitive over-active EDCF signaling. Much attention has been given to elucidating the mechanisms of under-active EDRF signaling and its role in causing endothelial dysfunction, wherein excess reactive oxygen species (ROS) accumulation and oxidative stress under CVD risk conditions have been recognized as major factors in reducing NO bioavailability thus causing under-active EDRF signaling and endothelial dysfunction. Less attention however, has been given to elucidating the mechanisms of over-active COX-mediated EDCF signaling and its role in causing endothelial dysfunction. Moreover, while COX-mediated EDCF signaling activity has been investigated in some segments of the vasculature, most notably the aorta, it has not been well-investigated in the common carotid artery (CCA), a highly accessible cerebral blood flow conduit particularly advantageous in exploring the roles of the endothelium in vascular pathogenesis. It was the global purpose of this thesis to gain a better understanding of the cellular-molecular mechanisms accounting for endothelial dysfunction in the CCA of animal models known to exhibit COX-mediated EDCF signaling activity, in particular essential (spontaneous) hypertension and aging. Experimental Objective and Approach: This thesis comprises three studies. Study I and Study II investigated the CCA of young-adult (16-24wk old) normotensive Wistar Kyoto (WKY) and Spontaneously Hypertensive (SHR) rats. Study III investigated the CCA of Adult (25-36wks old) and Aging (60-75wks old) Sprague Dawley (SD) rats treated in vivo (or not; CON) with L-buthionine sulfoximine (BSO) to chronically deplete the cellular anti-oxidant glutathione (GSH) and increase ROS accumulation and oxidative stress. The global objective and approach across these studies was to systematically examine the relative contributions of NOS and COX signaling pathways in mediating the acetylcholine (ACh)-stimulated endothelium-dependent relaxation (EDRF) and contractile (EDCF) activities of isometrically-mounted CCA in tissue baths in vitro, with a particular focus on elucidating the mechanisms of COX-mediated EDCF signaling activity. An added objective was to examine the in vivo hemodynamic characteristics of the CCA in each animal model investigated, serving both to identify the pressure-flow environment that the CCA is exposed to in vivo and to provide assessment of potential hypertension, aging, and oxidative stress effects on large artery hemodynamics. Key Findings: Study I hemodynamic analysis confirmed a hypertensive state in young adult SHR while also exposing a reduction in mean CCA blood flow in SHR compared to WKY accompanied by a multi-faceted pressure-flow interaction across the cardiac cycle relating to flow and pressure augmentation. Study III hemodynamic analysis found that neither aging nor chronic BSO-induced GSH depletion affected CCA blood pressure or blood flow parameters in SD rats. Study I and II demonstrated that a COX-mediated EDCF response impaired ACh-stimulated endothelium-dependent vasorelaxation in pre-contracted CCA from young adult SHR, while EDRF signaling activity, predominantly mediated by NO, remained well-preserved compared to WKY. Examining ACh-stimulated contractile function specifically from a quiescent (non pre-contracted) state revealed that EDCF activity did exist in WKY CCA but could be completely suppressed by NO-mediated EDRF signaling activity, whereas the similarly robust NO-meditated EDRF signaling activity in SHR CCA could not fully suppress its >2-fold augmented EDCF activity vs. WKY CCA. Further pharmaco-dissection of ACh-stimulated contractile function in the SHR-WKY CCA model revealed that the EDCF signaling activity was completely dependent on the COX-1 (but not COX-2) isoform of COX and was almost exclusively mediated by the thromboxane-prostanoid (TP) sub-type of the prostaglandin (PG) G-protein coupled receptor family and by Rho-associated kinase (ROCK), a down-stream effector of the molecular switch RhoA. Furthermore, it was found that while exogenous ROS-stimulated CCA contractile function was similarly >2-fold augmented in SHR vs. WKY and dependent on COX-1 and TP receptor and ROCK effectors, ACh-stimulated CCA EDCF signaling activity was only minimally affected by in-bath ROS manipulating compounds. Additional biochemical and molecular analysis revealed that ACh stimulation was associated with PG over-production from an over-expressed COX-1 in SHR CCA, and with CCA plasma membrane localization and activation of RhoA. Study III demonstrated that a COX-mediated EDCF response impaired ACh-stimulated endothelium-dependent vasorelaxation in pre-contracted CCA from Aging SD rats, while EDRF signaling activity, predominantly mediated by NO, remained well-preserved compared to Adult SD rats. Specific examination of ACh-stimulated contractile function revealed that EDCF activity did exist in Adult CCA but could be completely suppressed by NO-mediated EDRF signaling activity, whereas the similarly robust NO-meditated EDRF signaling activity in Aging CCA could not fully suppress its >3-fold augmented EDCF activity vs. Adult CCA. Further pharmaco-dissection of ACh-stimulated contractile function in the Adult-Aging SD rat CCA model revealed that EDCF signaling activity was completely dependent on COX-1, but while exogenous ROS was able to elicit a COX-dependent CCA contractile response, in-bath ROS manipulating compounds were found to be without effect on ACh-stimulated CCA EDCF signaling activity. Furthermore, biochemical analysis revealed that aging was not associated with a change in tissue (liver and vascular) GSH content or ROS accumulation. Chronic in vivo BSO treatment was effective in depleting tissue GSH content and increasing ROS accumulation, to a similar extent, in both Adult and Aging SD rats. However, regardless of age, neither ACh-stimulated NO-mediated EDRF signaling activity nor COX-mediated EDCF signaling activity were affected by these BSO-induced perturbations. Conclusions and Perspective: In the CCA of animals at the early pathological stages of either essential hypertension (young adult SHR) or normotensive aging (Aging SD rats), endothelial vasomotor dysfunction can be caused solely by over-active EDCF signaling, apparently disconnected from changes in NO bioavailability or oxidative stress. While NO and ROS may act, respectively, as negative and positive modulators of the established COX-PG-TP receptor-RhoA-ROCK cell-signaling axis mediating endothelium-dependent contractile activity, these factors do not appear to be essential to the mechanism(s) underlying the development of over-active EDCF signaling. Further elucidation of the cellular-molecular causes of over-active EDCF signaling, and its patho-biological consequences, in the SHR-WKY and Adult-Aging SD rat CCA models of EDCF activity established and hemodynamically characterized in this thesis, may help to identify new or more effective targets to be used in prevention or treatment strategies to combat the pathogenesis of CVD.

Page generated in 0.0268 seconds