Spelling suggestions: "subject:"[een] GRAPH"" "subject:"[enn] GRAPH""
111 |
Geometric Representations of Graphs: Theory and Application / Geometrische Repräsentationen von Graphen: Theorie und PraxisKlesen, Felix January 2025 (has links) (PDF)
Graph Drawing is a field of research that has application in any field of science that
needs to visualize binary relations. This thesis covers various problems arising when
drawing graphs, both in theoretical and applied settings.
In the first and more theory-based part, we start by discussing how and to
which degree graph drawings can be used to visually prove graph properties (such
as connectivity) in an effective manner. Both for these visual proofs and for graph
drawings in general, the visual complexity determines how well humans are able
to perceive and process them. We find it thus paramount to minimize the visual
complexity of drawings. For example, one measure for the visual complexity of a
straight-line node-link diagram is the number of segments used. We prove lower
bounds on the segment number of some planar graph classes. These bounds tell us
how (visually) complex node-link diagrams (a traditional drawing style) of these
graphs must be at least. Next, we consider obstacle representations, which can be
far less (visually) complex in some cases, however, (usually) at the expense of being
harder to understand.
Next, we investigate the coloring of mixed and directional interval graphs. While
this in itself is not a drawing problem, it has, among others, application in the
Sugiyama framework, which is a widely used framework for layered orthogonal graph
drawing. In the final chapter of the first part, we consider drawings of level graphs
on few levels under a given set of precedence constraints.
The two problems considered in the second part are motivated by applications
in biology. First, we propose a drawing style for visualizing multispecies coalescent
trees, which are composed of a species tree and associated gene trees, and then
investigate various drawing algorithms. Second, we propose a model for visualizing
geophylogenies, that is, species trees that label sites on maps, and then analyze
various variants and algorithms to draw them. / Graphenzeichnen ist eine wissenschaftliche Disziplin, die in jeder anderen Wissenschaft
Anwendung findet, in der binäre Relationen visualisiert werden. Diese Dissertation
behandelt diverse Probleme, die beim Zeichnen von Graphen auftreten, sowohl in
praktischen als auch in theoretischen Kontexten.
Im ersten und eher theorieorientierten Teil diskutieren wir, wie und inwieweit
Zeichnungen von Graphen benutzt werden können, um Eigenschaften von Graphen
(wie zum Beispiel Zusammenhang) auf effektive Weise visuell zu beweisen. Sowohl
für diese visuellen Beweise als auch für Zeichnungen von Graphen im Allgemeinen
bestimmt die visuelle Komplexität, wie gut Menschen dazu in der Lage sind, Graphen
wahrzunehmen und zu verarbeiten. Daher halten wir es für äußerst wichtig, die
visuelle Komplexität von Zeichnungen zu minimieren. Ein Maß für die visuelle Kom-
plexität von geradelinigen Node-Link-Diagrammen (einem traditionellen Zeichenstil)
ist die Anzahl der benutzten Liniensegmente. Wir beweisen untere Schranken für
die Segmentzahl einiger planarer Graphklassen, welche wiederum implizieren, wie
(visuell) komplex Node-Link-Diagramme dieser Graphen mindestens sind. Als nächs-
tes betrachten wir Hindernisrepräsentationen, die in manchen Fällen eine deutlich
geringere (visuelle) Komplexität haben können, dafür allerdings (oft) schwerer zu
verstehen sind.
Danach untersuchen wir das Färben von gemischten sowie gerichteten Intervallgra-
phen. Während es sich dabei nicht direkt um ein Zeichenproblem handelt, findet es
unter anderem Anwendung im Sugiyama-Framework, einem weit verbreiteten Frame-
work zum Erstellen von orthogonalen Lagenzeichnungen. Im letzten Kapitel des ersten
Teils betrachten wir das Zeichnen von Levelgraphen unter Vorrangbeschränkungen.
Die beiden Probleme, die wir im zweiten Teil betrachten, sind durch Anwendungen
in der Biologie motiviert. Als erstes schlagen wir einen Zeichenstil für das Visualisieren
von Multispecies-Coalescent-Bäumen vor, welche aus einem Artenbaum und damit
verknüpften Genbäumen bestehen, und geben diverse Zeichenalgorithmen für solche
Bäume an. Als zweites schlagen wir ein Modell zum Visualieren von Artenbäumen
vor, die Orte auf Landkarten beschriften, und analysieren diverse Varianten und
Algorithmen um diese zu zeichnen.
|
112 |
SynopSys: Foundations for Multidimensional Graph AnalyticsRudolf, Michael, Voigt, Hannes, Bornhövd, Christof, Lehner, Wolfgang 02 February 2023 (has links)
The past few years have seen a tremendous increase in often irregularly structured data that can be represented most naturally and efficiently in the form of graphs. Making sense of incessantly growing graphs is not only a key requirement in applications like social media analysis or fraud detection but also a necessity in many traditional enterprise scenarios. Thus, a flexible approach for multidimensional analysis of graph data is needed. Whereas many existing technologies require up-front modelling of analytical scenarios and are difficult to adapt to changes, our approach allows for ad-hoc analytical queries of graph data. Extending our previous work on graph summarization, in this position paper we lay the foundation for large graph analytics to enable business intelligence on graph-structured data.
|
113 |
An algorithmic approach to center location and related problems.Jaeger, Mordechai. January 1992 (has links)
Center location on cactus graphs. The p-center problem has been shown to be NP-hard for case of a general graph, yet polynomial algorithms exist for the case of a tree graph. Specifically, we consider "cactus graphs" where each edge is contained in at most one cycle. We show that the p-center problem on this class can be solved in polynomial time using a decomposition algorithm. We partition the graph into a set of subgraphs which are then solved sequentially. The solutions to the subgraphs are linked by a single parameter. The algorithm runs in polynomial time. Locating capacity limited centers on trees. The uncapacitated p-center problem on trees is solvable in polynomial time. We extend this result to include the case where each center can serve a limited number of customers and show that the capacitated p-center on trees can be solved in polynomial time when the capacities are identical. The algorithm consists of solving a capacitated covering problem and then using search routines to find the optimal domination radius. Center location on spheres. We discuss the unweighted center location problem. The following results are presented: (i) An O(n) time algorithm to solve the 1-center problem if the vertices are on one half of the sphere, and an O(n) time algorithm to check whether this condition holds. Both algorithms are based on presenting the problems as 3-dimensional convex programming problems with linear constraints and applying a pruning technique to find the optimum in O(n) time. (ii) An O(n$\sp3$ log n) time algorithm for the 2-center problem on the whole sphere. (iii) A reduction to show that the general p-center problem on a sphere is NP-hard. Locating hyperplanes on hypercubes. In linear regression models we are interested in locating a (d-1) dimensional hyperplane that will be as "close" as possible to existing vertices in the d-dimensional hypercube. The least squares criterion is usually applied for the linear fitting problem; while fitting according to the least absolute value ("minisum") seems to be "complicated". We solve fitting problems with the minisum criterion and present linear time algorithms when the dimension d is fixed. (Abstract shortened with permission of author.)
|
114 |
Minors and spanning trees in graphsMontgomery, Richard Harford January 2015 (has links)
No description available.
|
115 |
Distance-two constrained labellings of graphs and related problemsGu, Guohua 01 January 2005 (has links)
No description available.
|
116 |
Indecomposability and signed domination in graphsBreiner, Andrew Charles. January 1900 (has links)
Thesis (Ph.D.)--University of Nebraska-Lincoln, 2006. / Title from title screen (site viewed on Feb. 5, 2007). PDF text: 66 p. : ill. (some col.) UMI publication number: AAT 3216432. Includes bibliographical references. Also available in microfilm and microfiche format.
|
117 |
Discrete Nodal Domain Theorems18 May 2001 (has links)
No description available.
|
118 |
On the Structure of Counterexamples to the Coloring Conjecture of HajósZickfeld, Florian 20 May 2004 (has links)
Hajós conjectured that, for any positive integer
k, every graph containing no K_(k+1)-subdivision is k-colorable. This is true when k is at most three, and false when k exceeds six. Hajós' conjecture remains open for k=4,5.
We will first present some known results on Hajós' conjecture. Then we derive a result on the structure of 2-connected graphs
with no cycle through three specified vertices. This result will then be used for the proof of the main result of this thesis. We show that any possible counterexample to Hajós' conjecture for
k=4 with minimum number of vertices must be 4-connected. This is
a step in an attempt to reduce Hajós' conjecture for k=4 to the conjecture of Seymour that any 5-connected non-planar graph contains a K_5-subdivision.
|
119 |
Degree sequencesLuo, Rong, January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains iii, 19 p. Includes abstract. Includes bibliographical references (p. 17-19).
|
120 |
Eulerian subgraphs and Hamiltonicity of claw-free graphsZhan, Mingquan. January 2003 (has links)
Thesis (Ph. D.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains vi, 52 p. : ill. Includes abstract. Includes bibliographical references (p. 50-52).
|
Page generated in 0.0328 seconds