• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of combustion and performance characteristics of CAI combustion engine with positive and negative valve overlap

Yang, Changho January 2008 (has links)
In the first part of studies, Controlled Auto-Ignition (CAI) combustion was investigated in a Ricardo E6 single cylinder, four stroke gasoline engine. CAI combustion is achieved by employing positive valve overlap configuration in combination with various compression ratios and intake air temperature strategies. The CAI operational region is limited by engine load due to knock and partial burned boundaries. The combustion characteristics and emissions are studied in order to understand the major advantages and drawbacks of CAI combustion with positive valve overlap. The enlargement of the CAI operational region is obtained by boosting intake air and external EGR. The lean-boosted operation elevators the range of CAI combustion to the higher load region, and the use of external EGR allows the engine to operation with CAI combustion in the mid range of region between boosted and N/A CAI operational range. The results are analyzed and combustion characteristics, performance and emissions are investigated. A Ricardo Hydra single cylinder, four stroke optical gasoline engine with optical access is then experimented to investigate CAI combustion through negative valve overlap configuration and an intake heater. The effects of direct fuel injection timings spark timings and air/fuel ratio are studied by means of simultaneous incylinder heat release study and direct visualization, chemiluminescence techniques which uses full, OH radical and CHO species. Both heat release analysis and chemiluminescence results have identified the pressure of minor combustion during the NVO period. Both the charge cooling and local air/fuel ratio effects are also investigated by varying the quantity of direct air injection.
2

[en] EXPERIMENTAL STUDY OF A HOMOGENEOUS MIXTURE COMPRESSION IGNITION ENGINE - HCCI / [pt] ESTUDO EXPERIMENTAL DE UM MOTOR DE IGNIÇÃO POR COMPRESSÃO DE MISTURA HOMOGÊNEA - HCCI

JOSE ALBERTO AGUILAR FRANCO 03 June 2019 (has links)
[pt] Uma bancada experimental foi desenhada e desenvolvida para realizar ensaios experimentais de um motor de ciclo Diesel utilizando gasolina como combustível. O motor (originalmente de ciclo diesel) foi adequado com diferentes dispositivos para funcionar em modo HCCI. Estas modificações não afetaram as condições originais do motor, podendo em qualquer momento voltar ao modo diesel. A instrumentação inclui medição de: temperatura (gases de escapamento, entrada da carga de admissão, óleo lubrificante), pressão (entrada do ar de admissão, entrada da gasolina, câmara de combustão), torque, rotação, vazão de ar, vazão de combustível. O motor foi submetido a diversas condições de operação e parâmetros de controle para estudar e analisar os efeitos da rotação do motor, da relação ar-combustível e da temperatura da mistura (ar-gasolina) de entrada na combustão HCCI. Os resultados indicam que as variações na quantidade de combustível e na temperatura de admissão têm um efeito direto na combustão HCCI. Maiores temperaturas ou quantidades de combustível provocam um avanço da fase de ignição, que teria uma influência direta no início da combustão e nas máximas pressões no interior da câmara de combustão. Os resultados também indicam que, incrementando a quantidade de combustível e variando a temperatura de admissão, mais energia útil é gerada até atingir o limite da zona de detonação, obtendo os melhores resultados para a temperatura de 75 Graus C com uma eficiência térmica de 34,2 por cento na rotação de 1900 RPM. Pequenos ganhos na eficiência de combustão são traduzidos em economias significativas de energia, reduzindo também os níveis de poluição dos gases de escapamento. / [en] An experimental device was designed and developed to perform experimental tests of a Diesel cycle engine using gasoline as fuel. The engine (originally Diesel cycle) was adequated with different devices to operate in HCCI mode. These modifications did not affect the original conditions of the engine, making it able return to the diesel mode at any moment. The instrumentation included measurement of: temperature (exhaust gases, intake charge admission, lubricating oil), pressure (inlet ar admission, injector nozzle, combustion chamber), torque, engine speed, crankshaft angle, air flow and fuel rate. The engine was submitted to various operating conditions and control parameters to study and analyze the effects of the engine speed, the air-fuel ratio and the temperature of the mixture (air-gasoline) in the HCCI combustion. The results indicate that variations in the amount of fuel and the intake temperature have a direct effect on HCCI combustion. High temperatures or amounts of fuel cause an advanced ignition, which would have a direct influence on the combustion timing and in the maximum pressure inside the combustion chamber. The results also indicate that increasing the amount of fuel and varying the inlet temperature, more useful energy is generated until it reaches the zone of detonation, getting the best results for the temperature of 75 C Degrees with a thermal efficiency of 34,2 percent at 1900 RPM. Small gains in combustion efficiency are translated into significant energy savings, reducing also the pollution levels caused by exhaust gases.
3

Modeling of Diesel HCCI combustion and its impact on pollutant emissions applied to global engine system simulation / Modélisation de la combustion diesel HCCI et de son impact sur la formation de polluants appliquée à la simulation système

Dulbecco, Alessio 02 February 2010 (has links)
La législation sur les émissions de polluants des Moteurs à Combustion Interne (ICEs) est de plus en plus contraignante et représente un gros défi pour les constructeurs automobiles. De nouvelles stratégies de combustion telles que la Combustion à Allumage par Compression Homogène (HCCI) et l’exploitation de stratégies d’injections multiples sont des voies prometteuses qui permettent de respecter les normes sur les émissions de NOx et de suies, du fait que la combustion a lieu dans un mélange très dilué et par conséquent à basse température. Ces aspects demandent la création d’outils numériques adaptés à ces nouveaux défis. Cette thèse présente le développement d’un nouveau modèle 0D de combustion Diesel HCCI : le dual Combustion Model (dual - CM). Le modèle dual-CM a été basé sur l’approche PCM-FPI utilisée en Mécanique des Fluides Numérique (CFD) 3D, qui permet de prédire les caractéristiques de l’auto-allumage et du dégagement de chaleur de tous les modes de combustion Diesel. Afin d’adapter l’approche PCM-FPI à un formalisme 0D, il est fondamental de décrire précisément le mélange à l’intérieur du cylindre. Par consequent, des modèles d’évaporation du carburant liquide, de formation de la zone de mélange et de variance de la fraction de mélange, qui permettent d’avoir une description détaillée des proprietés thermochimiques locales du mélange y compris pour des configurations adoptant des stratégies d’injections multiples, sont proposés. Dans une première phase, les résultats du modèle ont été comparés aux résultats du modèle 3D. Ensuite, le modèle dual-CM a été validé sur une grande base de données expérimentales; compte tenu du bon accord avec l’expérience et du temps de calcul réduit, l’approche présentée s’est montrée prometteuse pour des applications de type simulation système. Pour conclure, les limites des hypothèses utilisées dans dual-CM ont été investiguées et des perspectives pour les dévélopements futurs ont été proposées. / More and more stringent restrictions concerning the pollutant emissions of Internal Combustion Engines (ICEs) constitute a major challenge for the automotive industry. New combustion strategies such as Homogeneous Charge Compression Ignition (HCCI) and the implementation of complex injection strategies are promising solutions for achieving the imposed emission standards as they permit low NOx and soot emissions, via lean and highly diluted combustions, thus assuring low combustion temperatures. This requires the creation of numerical tools adapted to these new challenges. This Ph.D presents the development of a new 0D Diesel HCCI combustion model : the dual Combustion Model (dual−CM ). The dual-CM is based on the PCM-FPI approach used in 3D CFD, which allows to predict the characteristics of Auto-Ignition and Heat Release for all Diesel combustion modes. In order to adapt the PCM-FPI approach to a 0D formalism, a good description of the in-cylinder mixture is fundamental. Consequently, adapted models for liquid fuel evaporation, mixing zone formation and mixture fraction variance, which allow to have a detailed description of the local thermochemical properties of the mixture even in configurations adopting multiple injection strategies, are proposed. The results of the 0D model are compared in an initial step to the 3D CFD results. Then, the dual-CM is validated against a large experimental database; considering the good agreement with the experiments and low CPU costs, the presented approach is shown to be promising for global engine system simulations. Finally, the limits of the hypotheses made in the dual-CM are investigated and perspectives for future developments are proposed.

Page generated in 0.0464 seconds