• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling of Diesel HCCI combustion and its impact on pollutant emissions applied to global engine system simulation / Modélisation de la combustion diesel HCCI et de son impact sur la formation de polluants appliquée à la simulation système

Dulbecco, Alessio 02 February 2010 (has links)
La législation sur les émissions de polluants des Moteurs à Combustion Interne (ICEs) est de plus en plus contraignante et représente un gros défi pour les constructeurs automobiles. De nouvelles stratégies de combustion telles que la Combustion à Allumage par Compression Homogène (HCCI) et l’exploitation de stratégies d’injections multiples sont des voies prometteuses qui permettent de respecter les normes sur les émissions de NOx et de suies, du fait que la combustion a lieu dans un mélange très dilué et par conséquent à basse température. Ces aspects demandent la création d’outils numériques adaptés à ces nouveaux défis. Cette thèse présente le développement d’un nouveau modèle 0D de combustion Diesel HCCI : le dual Combustion Model (dual - CM). Le modèle dual-CM a été basé sur l’approche PCM-FPI utilisée en Mécanique des Fluides Numérique (CFD) 3D, qui permet de prédire les caractéristiques de l’auto-allumage et du dégagement de chaleur de tous les modes de combustion Diesel. Afin d’adapter l’approche PCM-FPI à un formalisme 0D, il est fondamental de décrire précisément le mélange à l’intérieur du cylindre. Par consequent, des modèles d’évaporation du carburant liquide, de formation de la zone de mélange et de variance de la fraction de mélange, qui permettent d’avoir une description détaillée des proprietés thermochimiques locales du mélange y compris pour des configurations adoptant des stratégies d’injections multiples, sont proposés. Dans une première phase, les résultats du modèle ont été comparés aux résultats du modèle 3D. Ensuite, le modèle dual-CM a été validé sur une grande base de données expérimentales; compte tenu du bon accord avec l’expérience et du temps de calcul réduit, l’approche présentée s’est montrée prometteuse pour des applications de type simulation système. Pour conclure, les limites des hypothèses utilisées dans dual-CM ont été investiguées et des perspectives pour les dévélopements futurs ont été proposées. / More and more stringent restrictions concerning the pollutant emissions of Internal Combustion Engines (ICEs) constitute a major challenge for the automotive industry. New combustion strategies such as Homogeneous Charge Compression Ignition (HCCI) and the implementation of complex injection strategies are promising solutions for achieving the imposed emission standards as they permit low NOx and soot emissions, via lean and highly diluted combustions, thus assuring low combustion temperatures. This requires the creation of numerical tools adapted to these new challenges. This Ph.D presents the development of a new 0D Diesel HCCI combustion model : the dual Combustion Model (dual−CM ). The dual-CM is based on the PCM-FPI approach used in 3D CFD, which allows to predict the characteristics of Auto-Ignition and Heat Release for all Diesel combustion modes. In order to adapt the PCM-FPI approach to a 0D formalism, a good description of the in-cylinder mixture is fundamental. Consequently, adapted models for liquid fuel evaporation, mixing zone formation and mixture fraction variance, which allow to have a detailed description of the local thermochemical properties of the mixture even in configurations adopting multiple injection strategies, are proposed. The results of the 0D model are compared in an initial step to the 3D CFD results. Then, the dual-CM is validated against a large experimental database; considering the good agreement with the experiments and low CPU costs, the presented approach is shown to be promising for global engine system simulations. Finally, the limits of the hypotheses made in the dual-CM are investigated and perspectives for future developments are proposed.
2

Étude expérimentale de la combustion à volume constant pour la propulsion aérobie : influence de l'aérodynamique et de la dilution sur l'allumage et la combustion / Experimental Study of Constant-Volume Combustion for Air-Breathing Propulsion : Influence of Aerodynamics and Dilution on Ignition and Combustion

Michalski, Quentin 29 April 2019 (has links)
Les turbomachines actuelles ont atteint un niveau de maturité technique très élevé. De nouvelles architectures reposant sur des cycles thermodynamiques basés sur une combustion à gain de pression, comme la combustion à volume constant (CVC), ont le potentiel d’augmenter leur efficacité. Dans cette étude,une solution qui repose sur l’intégration dans une turbomachine de chambres de combustion à volume constant sans piston (CVCSP) est considérée. Les objectifs de ces travaux de thèse sont doubles : dans un premier temps de développer et de caractériser extensivement un nouveau dispositif (CV2) dédié à la Combustion à volume constant sans piston sur un cas de référence et, dans un second temps, de proposer à travers plusieurs études, une analyse de l’influence de l’aérodynamique et de la dilution sur les processus d’allumage et, plus généralement de combustion. Le dispositif CV2 permet la combustion aérobie en allumage commandé d’un mélange de propane ou de n-décane, injecté directement dans la chambre. Un point de référence est caractérisé en détail via : des mesures de champs de vitesse par PIV, de chimiluminescence pendant la combustion, une analyse 0D développée dans cette étude. La caractérisation détaillée de ce point de référence montre que le dispositif CV2 reproduit correctement une combustion à volume constant turbulente dans un mélange faiblement hétérogène en température et stratifié en composition, et ce sur un nombre de cycles permettant d’établir une convergence statistique raisonnable. Ces diagnostics et analyses sont employés dans 2 cas d’études pour caractériser successivement : l’influence de l’aérodynamique, via une variation de l’instant d’allumage, l’influence des gaz brûlés résiduels sur la combustion en allumage commandé et la stabilité cyclique, via une variation de la pression d’échappement.Dans un fonctionnement sans balayage, on montre que cette variabilité cyclique est liée au premier ordre à la variation de la dilution en gaz brûlé résiduel du mélange et à la vitesse locale. On montre notamment que, pour un mélange donné, il existe une corrélation statistique entre une vitesse statistique limite et la probabilité d’allumage moyenne. Pour représenter l’effet de pression dans un plénum en amont d’une turbine, on réalise une étude paramétrique sur la pression d’échappement. La dilution résultante, croissant avec la pression d’échappement, diminue la vitesse fondamentale de flamme et ralentit donc la combustion. Les niveaux de températures des gaz brûlés résiduels résultent des échanges de chaleur qui ont lieu sur toute la durée du cycle, de l’allumage du cycle N à celui du cycle N+1 suivant. Des extrapolations sur des cycles à température de paroi plus élevée et à échappement plus court montrent que l’adiabaticité du cycle est améliorée (de 20 %) et que l’effet de dilution en température est alors favorable à une vitesse de flamme turbulente qui est alors plus élevée. Un phénomène d’allumage par gaz brûlé résiduel est observé sur certains cycles de combustion. Ce phénomène est caractérisé dans des conditions favorables, i.e. faible richesse (0.66), allumage tardif et cycle plus court. Lors d’un allumage par gaz brûlés résiduels, un noyau de flamme se développe dans les zones présentant des gaz brûlés résiduels chauds et à basse vitesse autour du jet d’admission et se propage ensuite au reste du mélange identiquement à celui qui serait généré par allumage commandé.Ce travail prend place dans le cadre de la chaire industrielle CAPA sur la combustion alternative pour la propulsion aérobie financée par SAFRAN Tech, MBDA et l’ANR. / Current turbomachines have reached a very high level of technical maturity. Thermodynamic cycles based on pressure-gain combustion, such as constant volume combustion (CVC), feature a clear potential for efficiency improvement. The present study considers the integration in a turbomachine of piston-lessCVC chambers. The thesis work is twofold. First, a new experimental setup (CV2) dedicated to cyclic piston-less CVC is developed and thoroughly characterized on a reference operating point. Second, the influence of the aerodynamics and dilution on the processes of ignition and, in a larger sense, on combustion is discussed through dedicated studies. The CV2 device allows for the spark-ignited air-breathing combustion of a mixture of either propane orn-decane, directly injected into the chamber. A reference condition is characterized in details using: PIV velocity field measurements, chemiluminescence of combustion and a 0D modeling of the device. This detailed characterization evidenced that the CV2 combustion chamber successfully replicates, on a number of cycles allowing a reasonable statistical convergence, a turbulent deflagrative constant-volume combustion in a mixture stratified in composition. Those diagnostics and analyses are applied to 2 cases of study to characterize successively : the influence of the aerodynamics, through a variation of the ignition timing, the influence of the residual burnt gases on spark-ignited combustion and the cyclic stability, through a variation of the exhaust backpressure.Operating the device without scavenging of the combustion chamber, we show that the cyclic variability correlates strongly with both the variation of residual burnt gases dilution and the local velocity. Particularly, we show that for a given mixture, a correlation exists between a statistical velocity limit and the average probability of ignition. The effect of a plenum backpressure upstream of a turbine, downstream of the combustion chamber, is simulated by varying the exhaust system backpressure. The resulting dilution, which increases with the exhaust backpressure, diminishes the fundamental flame velocity of the mixture and slows down the combustion. The residual burnt gases temperature results from the integrated heat exchanges that happen during the total cycle duration starting from the end of combustion of cycle N, to the ignition of cycle N+1. Enhanced cycles, with an increased wall temperature and reduced exhaust duration, are extrapolated by 0D analysis. Those cycles evidence a reduction of the cumulated heat exchanges of up to 20 %. The resulting dilutionis more favorable to higher turbulent flame velocity thus to shorter combustion duration. A phenomenon of ignition induced by the residual burnt gases is observed on certain combustion cycles. This phenomenon is characterized in favorable conditions, i.e. fuel-lean equivalence ratio (0.66), late ignition and shortcycles. During an ignition by residual burnt gases, a flame kernel is ignited in areas where the still hot residuals burnt gases meet fresh gases in low-velocity areas around the intake jet. The ignition kernel then propagates to the rest of the mixture in a similar manner as if it was spark-ignited.This work is part of the CAPA Chair research program on Alternative Combustion modes for Air-breathing Propulsion supported by SAFRAN Tech, MBDAFrance and ANR (French National Research Agency).
3

Thermal energy management and chemical reaction investigation of micro-proton exchange membrane fuel cell and fuel cell system using finite element modelling

McGee, Seán January 2015 (has links)
Fuel cell systems are becoming more commonplace as a power generation method and are being researched, developed, and explored for commercial use, including portable fuel cells that appear in laptops, phones, and of course, chargers. This thesis examines a model constructed on inspiration from the myFC PowerTrekk, a portable fuel cell charger, using COMSOL Multiphysics, a finite element analysis software. As an educational tool and in the form of zero-dimensional, two-dimensional, and three-dimensional models, an investigation was completed into the geometric construction, air conditions and compositions, and product materials with a best case scenario completed that summarizes the results identified. On the basis of the results of this research, it can be concluded that polyoximetylen and high-density polyethylene were considered as possible materials for the majority of the product, though a more thorough investigation is needed. Air flow of above 10 m/s, air water vapour mass fraction below 50% and initial temperature between 308K and 298K was considered in this best scenario. Suggestions on future expansions to this project are also given in the conclusion.

Page generated in 0.0221 seconds