Spelling suggestions: "subject:"laborexperimente"" "subject:"laborexperimenten""
1 |
Optimierung der Standort- und Betriebsparameter von Infiltrationsbecken zur künstlichen Grundwasseranreicherung hinsichtlich quantitativer und qualitativer EffizienzFichtner, Thomas 08 November 2021 (has links)
Ein kontinuierlich ansteigender Wasserbedarf, verursacht durch verstärktes Bevölkerungswachstum, zunehmende Urbanisierung und Industrialisierung, einhergehend mit einer Übernutzung der verfügbaren Wasserressourcen, führt weltweit zu einem dauerhaften Absinken der Grundwasserstände. Um das zeitliche Ungleichgewicht zwischen lokalem Wasserbedarf und Verfügbarkeit zu überwinden und die daraus resultierenden negativen Auswirkungen abzumildern, erfolgt im Rahmen einer künstlichen Grundwasseranreicherung die gezielte Anreicherung oder Wiederaufladung eines Aquifers. Dazu wird überschüssiges Oberflächenwasser unter kontrollierten Bedingungen versickert oder infiltriert, um es in Zeiten von Wassermangel zur Verfügung zu stellen oder die ökologischen Randbedingungen zu verbessern.
Beim Betrieb der dafür häufig eingesetzten Infiltrationsbecken kommt es in Abhängigkeit von den Standort- (Boden/Klima/Wasserqualität) und den Betriebsparametern (Hydraulische Beladungsrate, Hydraulischer Beladungszyklus) allerdings durch verschiedene Prozesse (Kolmation, Sauerstoff- und Nährstofftransport) häufig zur negativen Beeinflussung der quantitativen und qualitativen Effizienz solcher Anlagen.
Bisher durchgeführte Untersuchungen im Labor- und Feldmaßstab sowie die im Zuge des Betriebes bestehender Infiltrationsbecken gewonnenen Daten liefern hauptsächlich Informationen zum Einfluss einzelner Randbedingungen auf die Veränderung der Infiltrationskapazität bzw. die quantitative Effizienz. Allerdings können auf Basis dieser Daten nicht alle offenen Fragen hinsichtlich des Einflusses der Standort- und Betriebsparameter auf die quantitative und qualitative Effizienz von Infiltrationsbecken vollumfänglich und abschließend beantwortet werden. Aufgrund nicht untersuchter Aspekte sowie widersprüchlicher Daten existieren Unsicherheiten bezüglich der Bewertung hinsichtlich des Einflusses der einzelnen Standort- und Betriebsparameter auf die Effizienz solcher Anlagen.
Zur Generierung von weiterem Wissen über den Einfluss von Standort- und Betriebsparametern auf die Effizienz von Infiltrationsbecken und zur anschließenden Formulierung von Empfehlungen für eine optimierte Standortauswahl sowie Betriebsweise von Infiltrationsbecken erfolgt die Durchführung von Laborversuchen mittels kleinskaliger und großskaliger, physikalischer Modelle. Es werden verschiedene Infiltrationsszenarien bei wechselnden Randbedingungen (Bodenart, Temperatur, Wasserqualität, Hydraulische Beladungsrate, Hydraulischer Beladungszyklus) durchgeführt.
Anhand der gewonnenen Daten kann die Beeinflussung der quantitativen und qualitativen Effizienz durch die verschiedenen Standort- und Betriebsparameter sowie die dadurch beeinflussten Prozesse sehr gut aufgezeigt werden. Das bisher existierende Wissen kann dabei zum Teil bestätigt und um zusätzliche Erkenntnisse erweitert werden.
Es zeigt sich, dass eine höhere hydraulische Durchlässigkeit des anstehenden Bodens eine geringere Reduzierung der Infiltrationskapazität durch Kolmationsprozesse verursacht und zudem für eine bessere Sauerstoffverfügbarkeit sorgt. Darüber hinaus wird ersichtlich, dass Bodentexturen mit einem mittleren Porendurchmesser von 230 µm optimale Bedingungen für eine hohe biologische Aktivität einhergehend mit einem Abbau infiltrierter Substanzen bieten.
Der Nachweis einer verstärkten Reduzierung der Infiltrationskapazität durch Kolmationsprozesse bei erhöhten Temperaturen, aber nicht vorhandener Sonneneinstrahlung, kann nicht erbracht werden, da das Fließen des infiltrierten Wassers signifikant durch die erhöhte Viskosität beeinflusst wird.
Eine schlechtere Wasserqualität, gleichbedeutend mit erhöhten Konzentrationen an abfiltrierbaren Stoffen sowie gelöstem organischen Kohlenstoff, verursacht in den simulierten Infiltrationsszenarien eine stärkere Reduzierung der Infiltrationskapazität. Die physikalischen Kolmationsprozesse tragen dabei den Hauptanteil an der Reduzierung der Infiltrationskapazität.
Des Weiteren wird nachgewiesen, dass eine erhöhte HBR zu einer verstärkten Reduzierung der Infiltrationskapazität und zu einer verschlechterten Sauerstoffverfügbarkeit führt.
Die Länge der Infiltrations- und Trockenphasen während des simulierten Betriebes von Infiltrationsbecken beeinflusst entscheidend die Reduzierung der Infiltrationskapazität sowie die Sauerstoffverfügbarkeit. Dabei kann gezeigt werden, dass unabhängig von der Länge der Infiltrations- und Trockenphasen eine vollständige Wiederherstellung der Sauerstoffverfügbarkeit innerhalb von 24 h im Anschluss an eine Infiltrationsphase gewährleistet wird. Das Verhältnis von Infiltrations- und Trockenphasen, auch als Hydraulischer Beladungszyklus bezeichnet, hat hingegen nahezu keinen Einfluss auf die quantitative Effizienz.
Bei der Betrachtung aller simulierten Infiltrationsszenarien inklusive der Wechselwirkungen zwischen den verschiedenen Standort- und Betriebsparametern können die optimalen Bedingungen für eine hohe quantitative und qualitative Effizienz von Infiltrationsbecken identifiziert werden. Diese sind gegeben beim Vorhandensein eines gut durchlässigen Bodens (hydraulische Leitfähigkeit > 10-4 m s-1), idealerweise mit einem mittleren Porendurchmesser von 230 µm, gepaart mit einer intermittierenden Infiltration von Wasser höherer Qualität ((AFS ≤ 10 mg L-1, BDOC ≤ 10 mg L-1) und der Vermeidung von Infiltrationsphasen länger als 24 h.
Eine Widerspiegelung der experimentellen Ergebnisse sowie eine Vorhersage der Reduzierung der Infiltrationskapazität ist mit dem ausgewählten, analytischen Modell nach Pedretti et al., 2012 aufgrund der unzureichend implementierten Berücksichtigung veränderlicher Eingangsparameter nur bedingt möglich.
Auf Basis der gewonnenen Daten und dem damit einhergehenden erweiterten Wissen über den Einfluss von Standort- und Betriebsparametern auf die Effizienz von Infiltrationsbecken können schlussendlich Empfehlungen für die Standortauswahl und die optimale Betriebsweise ausgesprochen werden.:1 Einleitung...1
2 Grundlagen der künstlichen Grundwasseranreicherung...7
3 Vorliegende Erkenntnisse zur Beeinflussung der quantitativen und qualitativen
Effizienz durch Standort- und Betriebsparameter...38
4 Methoden...49
5 Gewonnene Erkenntnisse hinsichtlich der Beeinflussung der quantitativen und
qualitativen Effizienz durch Standort- und Betriebsparameter...87
6 Empfehlungen zur Optimierung von Standort- und Betriebsbedingungen
von Infiltrationsbecken zur künstlichen Grundwasseranreicherung...128
7 Schlussfolgerung und Ausblick...136 / A continuously rising demand for water, caused by increased population growth, growing urbanization and industrialization, accompanied by overuse of available water resources, is leading to a permanent drop in groundwater levels worldwide. In order to overcome the temporal imbalance between local water demand and availability and to mitigate the resulting negative effects, artificial groundwater recharge involves the managed enrichment or recharging of an aquifer. For this purpose, excess surface water is percolated or infiltrated under controlled conditions in order to make it available in times of water shortage or to improve the ecological boundary conditions.
However, the quantitative and qualitative efficiency of frequently used infiltration basins during the operation is often negatively influenced by a wide variety of processes (clogging, oxygen and nutrient transport), depending on the location (soil/climate/water quality) and the operating parameters (loading rate, loading cycle).
Investigations conducted to date on laboratory and field scale as well as data obtained during the operation of existing infiltration basins provide information on the influence of individual boundary conditions on the change in infiltration capacity or quantitative efficiency. However, not all open questions regarding the influence of site specific and operating parameters on the quantitative and qualitative efficiency of infiltration tanks can be answered completely and conclusively on the basis of these data. Due to aspects that have not been investigated and contradictory data, there are uncertainties in the evaluation regarding the influence of the individual site and operating parameters on the efficiency of the plants.
Laboratory tests using small-scale and large-scale physical models were carried out, in order to generate further knowledge about the influence of site specific and operating parameters on the efficiency of infiltration basins and to formulate subsequently recommendations for an optimised site selection and operation of these plants. Various infiltration scenarios were carried out under changing boundary conditions (soil type, temperature, water quality, hydraulic loading rate, hydraulic loading cycle).
Based on the data obtained, the influence on the quantitative and qualitative efficiency by the various site specific and operating parameters and the processes influenced by them can be demonstrated very well. The existing knowledge can be partially confirmed and extended by additional findings.
It shows that a higher hydraulic permeability of the existing soil causes a lower reduction of the infiltration capacity by clogging processes and provides also a better oxygen availability. Furthermore, it can be observed that soil textures with an average pore diameter of 230 µm offer optimal conditions for high biological activity combined with a strong degradation of infiltrated substances.
In case of higher temperatures but without solar radiation, an increased reduction of the infiltration capacity by clogging processes cannot be observed, since the flow of the infiltrated water is significantly influenced by the increased viscosity.
In the simulated infiltration scenarios, poorer water quality, synonymous with increased concentrations of filterable substances as well as dissolved organic carbon, cause a stronger reduction of the infiltration capacity. Physical clogging processes are contributing the major part to the reduction of the infiltration capacity.
Furthermore, it can be shown that an increased hydraulic loading rate leads to an increased reduction of the infiltration capacity and to a decreased oxygen availability.
The length of the infiltration and drying phases during the simulated operation of infiltration basins has a decisive influence on the reduction of the infiltration capacity and the oxygen availability. It is demonstrated that regardless of the length of the infiltration and drying phases, a complete restoration of oxygen availability can be guaranteed within 24 h following an infiltration phase. In contrast, the ratio of infiltration and dry phases, also known as the hydraulic loading cycle, has almost no influence on the quantitative efficiency.
Optimal conditions for a high quantitative and qualitative efficiency of infiltration basins can be identified, when considering all simulated infiltration scenarios including the interactions between the different site specific and operating parameters. These are given in the presence of a well-permeable soil (hydraulic conductivity > 10-4 m s-1), ideally with an average pore diameter of 230 µm, coupled with an intermittent infiltration of water of higher quality ((AFS ≤ 10 mg L-1, BDOC ≤ 10 mg L-1) and the prevention of infiltration phases longer than 24 h.
A reflection of the experimental results as well as a prediction of the reduction of the infiltration capacity with the selected analytical model according to Pedretti et al., 2012 is only conditionally possible due to the insufficiently implemented consideration of variable input parameters.
Recommendations for site selection and optimal operation were finally made on the basis of the data obtained and the resulting extended knowledge about the influence of site specific and operating parameters on the efficiency of infiltration basins.:1 Einleitung...1
2 Grundlagen der künstlichen Grundwasseranreicherung...7
3 Vorliegende Erkenntnisse zur Beeinflussung der quantitativen und qualitativen
Effizienz durch Standort- und Betriebsparameter...38
4 Methoden...49
5 Gewonnene Erkenntnisse hinsichtlich der Beeinflussung der quantitativen und
qualitativen Effizienz durch Standort- und Betriebsparameter...87
6 Empfehlungen zur Optimierung von Standort- und Betriebsbedingungen
von Infiltrationsbecken zur künstlichen Grundwasseranreicherung...128
7 Schlussfolgerung und Ausblick...136
|
2 |
Geophysics for the Evaluation of Reactive SystemsBörner, Jana 23 August 2024 (has links)
The field of geosciences, including geophysics, plays a crucial role in addressing society's pressing concerns related to energy demand, climate change, resource preservation, and environmental protection. Reactive systems encountered in this context are characterized by intricate interactions among various phases, environmental conditions, physical and chemical processes. Achieving a comprehensive understanding of these processes and quantitatively evaluating reactive systems necessitates a holistic scientific approach. This approach encompasses efficient categorization of reactive systems, the development of appropriate experimental and computational tools, and the collection and dissemination of relevant data. In this context, this thesis contributes to geophysics and petrophysics with a focus on reactive systems.
It presents and interprets laboratory datasets that address various complex aspects of rock behavior, including the presence of graphite, resulting anisotropy, and the challenging petrophysical characteristics of carbonate rocks. This compilation of research results provides a multifaceted perspective on the complex nature of rocks, including their mineralogical, physical, and chemical properties. It thus contributes to a deeper comprehension of electrical rock properties and their practical utility. Upon examining carbonate rocks and the response of graphitic schist to CO$_\mathrm{2}$ under reservoir conditions, it becomes clear that the impact of increased reactivity in a system on geophysical parameters varies depending on the specific characteristics of the rocks and systems under investigation. Consequently, geophysical methods aiming at a quantitative assessment of reactive systems must exhibit robustness and efficiency in order to be effectively applied in a site- and system-specific manner.
Expanding on this foundation, computational methods have been developed to aid in the quantitative analysis of reactive processes in laboratory experiments. These methods also serve as tools for gaining insights into the origin of rock properties and the impact of microstructure variation. Furthermore, inversion techniques are introduced in conjunction with custom-designed experiments within the field of petrophysics. The resultant software tool is made publicly accessible. The research further delves into the exploration of how physical properties of rocks are influenced by their microstructure, as well as how the stochastic nature of pore space geometry can introduce variability and uncertainty in rock physics data. This investigation was carried out through microstructure modeling and finite element simulations.
Leveraging these tailored computational techniques allowed for a comprehensive understanding of laboratory data, facilitating robust generalizations and contextualization for field applications and site-specific integrated interpretation. To illustrate the application in a complex natural reactive system, a field study focusing on coastal fumarolic vents in volcanic terrain was carried out and is presented. The challenges, prospects and visualization strategies for integrating simulation or inversion results from different methods are examined. Effective evaluation of complex sites requires open access to existing knowledge, including laboratory datasets. Consequently, this work documents and provides openly accessible examples of complex multi-method laboratory datasets to facilitate better understanding, re-evaluation and application in the field.
Finally, the handling of multi-reactive systems in field applications is discussed. It involves the integration of three-dimensional subsurface models with petrophysical insights related to multi-reactive systems. These models are calibrated using additional complementary data from surface or borehole sources. This integrated approach enables a quantitative assessment of site-specific multi-reactive systems.
|
3 |
Thermal energy management and chemical reaction investigation of micro-proton exchange membrane fuel cell and fuel cell system using finite element modellingMcGee, Seán January 2015 (has links)
Fuel cell systems are becoming more commonplace as a power generation method and are being researched, developed, and explored for commercial use, including portable fuel cells that appear in laptops, phones, and of course, chargers. This thesis examines a model constructed on inspiration from the myFC PowerTrekk, a portable fuel cell charger, using COMSOL Multiphysics, a finite element analysis software. As an educational tool and in the form of zero-dimensional, two-dimensional, and three-dimensional models, an investigation was completed into the geometric construction, air conditions and compositions, and product materials with a best case scenario completed that summarizes the results identified. On the basis of the results of this research, it can be concluded that polyoximetylen and high-density polyethylene were considered as possible materials for the majority of the product, though a more thorough investigation is needed. Air flow of above 10 m/s, air water vapour mass fraction below 50% and initial temperature between 308K and 298K was considered in this best scenario. Suggestions on future expansions to this project are also given in the conclusion.
|
Page generated in 0.0573 seconds