• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 43
  • 17
  • 16
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 174
  • 174
  • 43
  • 37
  • 36
  • 33
  • 30
  • 28
  • 22
  • 20
  • 19
  • 19
  • 18
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical methods in aero-engine heat transfer

Hoggard, T. W. January 1986 (has links)
No description available.
2

A cylindrical probe for determination of thermal constants in situ

Yarger, Douglas Neal, 1937- January 1962 (has links)
No description available.
3

A cryostat for thermal conductivity measurements at low temperature

Bradbury, William Delp 08 1900 (has links)
No description available.
4

The thermal conductivity of molten salts and concentrated aqueous salt solutions

DiGuilio, Ralph Michael 08 1900 (has links)
No description available.
5

Measurement of thermal conductivity of PAN based carbon fiber

Moses, William Marshall 05 1900 (has links)
No description available.
6

Flow distributions of a perfect gas from manifolds with isothermally heated walls

Blanton, Roy Warner 05 1900 (has links)
No description available.
7

Finite element simulation of solidification in sand mould and gravity die castings

Samonds, M. T. January 1985 (has links)
No description available.
8

Element by Element methods for heat conduction problems

Gilvary, B. January 1986 (has links)
No description available.
9

Coupled heat conduction and deformation in a viscoelastic composite cylinder

Shah, Sneha 16 January 2010 (has links)
This study analyzes the thermo-mechanical response of a composite cylinder made up of two layers of linear isotropic viscoelastic materials that belong to the class of non-Thermorheologically Simple Material. The effect of time-varying temperature field due to unsteady heat conduction phenomenon is analyzed on the short term and long term material response in terms of stress, strain and displacement fields. The material properties of the two layers of the composite cylinder at any given location and time are assumed to depend on the temperature at that location at that given instant of time. Sequentially coupled analyses of heat conduction and deformation of viscoelastic composite cylinder is carried out to obtain the overall response. The stress and strain field developed in the composite cylinder is evaluated as the discontinuity in hoop stress and radial strain at the interface of the two layers caused due to mismatch in material properties may lead to delamination if it exceeds critical value. Analytical solution for the stress, strain and displacement fields of the viscoelastic composite cylinder is developed from the corresponding solution of linear elasticity problem by using the Correspondence Principle. The analytical solution for determining the temperature dependent stress, strain and displacement fields is further developed by incorporating the temperature dependence on the material properties and modeling the material as non-TSM. To analyze more complex geometry with general loading and boundary conditions, Finite Element(FE) analysis of the composite cylinder is performed and the results of analytical and FE method are found to be in good agreement. Parametric studies are carried out to understand the effect of change in material parameters namely the Prony coefficients in the transient creep compliance, characteristic of creep time in transient creep compliance and the instantaneous elastic compliance, on the overall response of the composite cylinder. The effect of different temperature dependent functions of the material properties, namely linear temperature variation and quadratic polynomial variation on the overall material response is also analyzed. It is observed that the effect of change in elastic properties significantly increases the jump in hoop stress and radial strain. It is also observed that when the materials are highly dependent on temperature the jump in radial strain and hoop stress increases significantly. The radial displacement also increases by a significant amount in both the cases.
10

Coupled heat conduction and deformation in a viscoelastic composite cylinder

Shah, Sneha 16 January 2010 (has links)
This study analyzes the thermo-mechanical response of a composite cylinder made up of two layers of linear isotropic viscoelastic materials that belong to the class of non-Thermorheologically Simple Material. The effect of time-varying temperature field due to unsteady heat conduction phenomenon is analyzed on the short term and long term material response in terms of stress, strain and displacement fields. The material properties of the two layers of the composite cylinder at any given location and time are assumed to depend on the temperature at that location at that given instant of time. Sequentially coupled analyses of heat conduction and deformation of viscoelastic composite cylinder is carried out to obtain the overall response. The stress and strain field developed in the composite cylinder is evaluated as the discontinuity in hoop stress and radial strain at the interface of the two layers caused due to mismatch in material properties may lead to delamination if it exceeds critical value. Analytical solution for the stress, strain and displacement fields of the viscoelastic composite cylinder is developed from the corresponding solution of linear elasticity problem by using the Correspondence Principle. The analytical solution for determining the temperature dependent stress, strain and displacement fields is further developed by incorporating the temperature dependence on the material properties and modeling the material as non-TSM. To analyze more complex geometry with general loading and boundary conditions, Finite Element(FE) analysis of the composite cylinder is performed and the results of analytical and FE method are found to be in good agreement. Parametric studies are carried out to understand the effect of change in material parameters namely the Prony coefficients in the transient creep compliance, characteristic of creep time in transient creep compliance and the instantaneous elastic compliance, on the overall response of the composite cylinder. The effect of different temperature dependent functions of the material properties, namely linear temperature variation and quadratic polynomial variation on the overall material response is also analyzed. It is observed that the effect of change in elastic properties significantly increases the jump in hoop stress and radial strain. It is also observed that when the materials are highly dependent on temperature the jump in radial strain and hoop stress increases significantly. The radial displacement also increases by a significant amount in both the cases.

Page generated in 0.048 seconds