• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 71
  • 67
  • 14
  • 11
  • 9
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 358
  • 358
  • 89
  • 86
  • 58
  • 52
  • 51
  • 40
  • 38
  • 37
  • 37
  • 34
  • 32
  • 31
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Transesterificação de oleos vegetais / Vegetable oil transesterification

Garcia, Camila Martins 03 June 2006 (has links)
Orientador: Ulf Friedrich Schuchardt / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Quimica / Made available in DSpace on 2018-08-06T22:18:12Z (GMT). No. of bitstreams: 1 Garcia_CamilaMartins_M.pdf: 3426251 bytes, checksum: 15281c791da719cabbecd7b5e99be0fa (MD5) Previous issue date: 2006 / Resumo: Neste trabalho sintetizou-se ésteres metílicos de óleo de soja, canola, milho, andiroba e óleo utilizado em frituras. Determinou-se a composição em ácidos graxos desses produtos, a viscosidade cinemática e a densidade. O comportamento dos ésteres em função do abaixamento da temperatura foi avaliado por calorimetria diferencial de varredura (DSC). Na etanólise via catálise básica homogênea, foram utilizados hidróxidos de sódio e de potássio, e metóxido de sódio como catalisadores. Os óleos vegetais empregados foram o óleo de soja e óleo utilizado em frituras. Estudaram-se estratégias para a separação e purificação dos ésteres etílicos. A melhor alternativa encontrada foi a lavagem dos ésteres etílicos após a neutralização do catalisador e subseqüente evaporação do excesso de etanol. Os desempenhos dos catalisadores foram semelhantes e as conversões em ésteres etílicos atingiram valores superiores a 92 % e 98 % nas reações realizadas a 70 °C e a 25 °C, respectivamente. Além das maiores conversões nas reações promovidas em temperatura ambiente, houve a separação espontânea da glicerina após o término da reação. No estudo da transesterificação via catálise ácida heterogênea, sintetizou-se um sólido superácido - a zircônia sulfatada (S-ZrO2) - através de uma rota alternativa sem solventes e precipitação. As condições reacionais para a metanólise de óleo de soja foram avaliadas e os melhores parâmetros foram: 5 % (m/m) de S-ZrO2, temperatura de 120 °C e tempo de reação de 1 hora. Essa condição otimizada foi aplicada à etanólise do óleo de soja. Tais condições foram aplicadas novamente à metanólise, porém utilizando-se uma zircônia sulfatada sintetizada através de um método de precipitação (SZ), e uma zircônia não sulfatada (ZrO2). Os resultados obtidos mostraram que a zircônia não sulfatada (ZrO2) não foi ativa na metanólise de óleo de soja nas condições reacionais otimizadas. A zircônia sulfatada sintetizada por um método convencional (SZ) apresentou uma atividade catalítica insatisfatória (8,5 % de conversão), muito menor que a da S-ZrO2 (98,6 % de conversão). Na etanólise, a conversão foi de 92 %. Os desempenhos da zircônia sulfatada (S-ZrO2) e de um catalisador comercial à base de nióbio (ácido niobídico suportado em grafite) foram comparados na esterificação de ácido oléico com metanol e na transesterificação do óleo de soja. Tanto a zircônia sulfatada quanto o catalisador à base de nióbio converteram o ácido oléico em oleato de metila, porém o catalisador comercial não foi ativo na transesterificação do óleo de soja. A espectroscopia de ressonância magnética nuclear foi utilizada na determinação da composição em ácidos graxos dos ésteres e na quantificação das conversões de todas as reações de transesterificação. / Abstract: In this work it were synthesized methyl ester from soybean oil, canola oil, corn oil, andiroba oil and used frying oil. It was determined their fatty acid composition, kinematic viscosity and specific mass. The temperature dependent methyl fatty esters behavior was evaluated by means of Differential Scanning Calorimetric (DSC). In the base-catalyzed ethanolysis it were used sodium and potassium hydroxides and sodium methoxide as catalysts. The vegetable oil used were soybean oil and used frying oil. Strategies were studied for ethyl esters isolation. The catalyst performances were similar and the ethyl ester conversions reached values higher than 92 % and 98 % in the reactions carried out at 70 and 25 °C, respectively. Additionally, in the transesterefication carried out at room temperature it has occurred the glycerol spontaneous decantation. By studying the heterogeneous acid-catalyzed soybean oil transesterefication, the sulfated zirconia (S-ZrO2) prepared by a free-solvent route, the conventional sulfated zirconia (SZ) and the zirconium oxide (ZrO2) were utilized as catalysts. The best result was achieved at 120 °C during 1 h. Catalyst ZrO2 was not active in the transesterefication of soybean oil. The conventional sulfated zirconia presented only a very low activity (conversion of 8,5 %), while the S-ZrO2 had a very high performance ¿ 98,6 % methyl ester conversion. NMR was used for the determination of the fatty acid composition and all reaction conversions. / Mestrado / Quimica Inorganica / Mestre em Química
22

Preparation and characterization of noble metal-magnetite hybrid nano/micro composites towards drug delivery and heterogeneous catalysis

Li, Wai Chung 22 June 2019 (has links)
This thesis describes the preparation and characterization of core-shell noble metal-magnetite hybrid hollow nanocomposites utilizing hierarchical architecture. The hollow magnetite (hFe3O4) nanoparticles were prepared by hydrothermal method, forming the cavity via Oswald ripening. Further surface modifications involved both inorganic and organic coatings, conferring the intracellular drug delivery ability and the catalytic enhancement. In the first part, a series of hierarchical core-shell nanostructures flower-like hFe3O4@AlOOH was synthesized through solvothermal method and sol-gel process. The formation of cavity accessible hFe3O4@γ-AlOOH was achieved using silica-templated solvothermal treatment where the Kirkendall effect was observed. The morphologies of the as-prepared nanocomposites were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR). Then, the nano-encapsulation of platinum drug using hollow magnetite and its derivatives, has been developed with improved loading efficiency via co-solvent system. A dimethylformamide/water co-solvent system was found to be the most efficient system to encapsulate water-insoluble cisplatin. The platinum content was further quantitatively and qualitatively analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and FTIR spectroscopy. The enhancement of loading efficiency could be driven by emulsification due to the diffusion of hydrophobic cisplatin into the hollow cavity of iron oxide nanoparticles. By incorporating water, the loading efficiency of hFe3O4 and hFe3O4@γ-AlOOH increased from 1-2% to 27% and from 6% to 54%, respectively. The grafting of cisplatin on AlOOH nanoflakes might account for the high loading efficiency of flower-like hFe3O4@AlOOH. As a complement to naked hFe3O4, a cell-penetrating poly(disulfide)s (CPD)-decorated hollow iron oxide nanoparticle was synthesized by immobilizing both cysteine and MPTMS as an initiator, followed by in situ polymerization to form hFe3O4-Cys-CPD-CONH2 and hFe3O4-MPS-CPD-CONH2. The morphologies were characterized by TEM/energy-dispersive X-ray spectroscopy (TEM/EDX) and the compositions of the as-prepared iron oxide nanocomposites were characterized by TGA, FTIR and X-ray photoelectron spectroscopy (XPS) and ICP-MS. The CPD coating not only serve as a protective layer, but also prevent the encapsulated cisplatin from a premature release. The hFe3O4-MPS-CPD-CONH2 exhibit promising features for the intracellular delivery of cisplatin, demonstrating a glutathione (GSH)-responsive drug release. Comparing with other hFe3O4 nanoparticles, an enhancement of cellular uptake of hFe3O4-MPS-CPD-CONH2 could be observed by optical microscope, showing rapid accumulation of the hFe3O4-MPS-CPD-CONH2 nanocomposites in the primary human renal proximal tubular epithelial cells (HRPTEpiCs) cell in 2 h. At 24 h, hFe3O4 (F), hFe3O4-MPS (FS) and hFe3O4-MPS-CPD-CONH2 (FSC) together with cisplatin treatment did not cause any significant cytotoxicity to the cells when the particle concentration is less than 10 µg/mL. Interestingly, FSCC showed a certain extent of toxicity with increasing Fe and Pt concentration along with the treated time. It may suggest that the hFe3O4-MPS-CPD-CONH2 nanoparticle, as a cisplatin carrier, could enhance the drug efficiency by increasing cellular uptake of the nanoparticles in HRPTEpiCs together with the boosted cytotoxicity. Based on these data, cisplatin- hFe3O4-MPS-CPD-CONH2 (FSCC) treatments with the concentration less than 20 µg/mL and duration no more than 24 h could maintain around 70% of the cell viability of the HRPTEpiCs. The hypothesis, at which CPD serves as an efficient carrier for intracellular cisplatin delivery, could be confirmed by both microscopic images and the cell viability test. In the second part, a series of Au/Fe3O4 hybrid nanocomposites was prepared to investigate their catalytic efficiencies using 4-nitrophenol reduction as a model system. The flower-like hFe3O4@γ-AlOOH@SiO2-NH2@Au was prepared by using protonated ammonium on hFe3O4@γ-AlOOH@SiO2-NH2 to entangle gold nanoparticles (AuNPs) via electrostatic attraction. In comparison to numerous of catalytic studies, the turnover frequency (TOF) of hFe3O4@γ-AlOOH@SiO2-NH2@Au shows a superior conversion rate up to 7.57 min-1 (4-nitrophenol per Au per min) for the 4-nitrophenol using sodium borohydride as a reductant. A rapid conversion of 4-nitrohpenol was observed using flower like composites that converted the 4-nitrophenol within 2 min. Our result suggests that silica residue hinders the reduction rate of the 4-nitrophenol. A significant deviation from pseudo first order was observed for densely AuNPs-functionalized nanoflower system, hFe3O4@γ-AlOOH@SiO2-NH2@Au2X, which is different from most of the 4-nitrophenol reductions reported in literature. The hFe3O4@γ-AlOOH@SiO2-NH2@Au also demonstrates catalytic activity when heated up to 800 °C before reduction. The recyclability was examined using magnetically recycled hFe3O4@γ-AlOOH@SiO2-NH2@Au, which showed insignificant decrease in the catalytic efficiency. To prove the concept, platinum nanoparticles (PtNPs) immobilized hFe3O4@γ-AlOOH@SiO2-NH2@Pt and hFe3O4@γ-AlOOH@SiO2-NH2@Pt/Au were also prepared via electrostatic attraction to verify the feasibility of endowing modular functionality via post modification.
23

Multifunctional Catalyst Design for the Valorization of CO2

Dokania, Abhay 02 1900 (has links)
The rapid global climate change associated with increasing planetary CO$_2$ levels is possibly one of the greatest challenges existing currently. In order to address this grave problem, a variety of solutions and approaches have been proposed. It is likely that a combination of these approaches would be required to solve the multi-dimensional problem of climate change. One potential approach to mitigate carbon emissions is the concept of a ‘Circular Carbon Economy’. This approach encompasses the concept of capturing carbon emissions and reusing the captured CO$_2$ to make fuels and chemicals using renewable energy. Use of fuels and chemicals manufactured via this approach would thus avoid ‘new’ CO$_2$ emissions and prevent the accumulation of additional CO$_2$ in the atmosphere as these products will be CO$_2$-neutral. The use of CO$_2$-neutral fuels would especially be beneficial as not only would it cause a significant impact on CO$_2$ emissions in terms of volume but also it would provide a way to store energy from intermittent sources like solar, wind etc. Furthermore, these fuels can be used without requiring a significant overhaul of the energy infrastructure. One of the most promising routes for the synthesis of fuels and chemicals from CO$_2$ is via the thermal hydrogenation of CO$_2$ using multifunctional heterogeneous catalysis. Multifunctional catalysis refers to the combination of catalysts having different functionalities into a single reactor (one-pot). This catalytic route is a powerful tool for tuning the product distribution during a reaction and for enhancing the yield of target products. Thus, this PhD Thesis describes the design of several multifunctional catalyst combinations which have been applied for producing various hydrocarbon products of interest from CO$_2$ ranging from light olefins, aromatics and fuel range paraffins. The catalyst combinations consisted of a metal/metal oxide and a zeolite and depending on the configuration used, enhanced the selectivity to target products. Various advanced characterization techniques have also been utilized in order to reveal the status of active species and the underlying reaction mechanism(s).
24

The Effects of Different Particle Size of Nano-ZnO and Alumina-based Catalysts on Removal of Atrazine from Water with Ozone

2015 December 1900 (has links)
Due to the widespread application of pesticides and herbicides in agricultural industries, these substances have been highlighted as emerging contamination of natural ground and surface water resources. Conventional water treatment processes are only effective in removing emerging contaminants in water. The mechanism of degradation of organic impurities present in water using ozone is known to either directly involve the ozone molecule or to occur by the indirect effect of free hydroxyl radicals (•OH). The latter are produced in the radical chain reaction of ozone decomposition. A series of experiments were carried out to investigate the effects of particle sizes of nano-ZnO catalysts on removal of atrazine (ATZ). Nano-ZnO catalysts increase the rate of ozone decomposition and atrazine removal by production of hydroxyl radicals as oxidative intermediates. However, different particle sizes have a minimal effect on the rate of ozone decomposition and atrazine removal. It is believed that molecular ozone is adsorbed on the surface of nano-ZnO followed by the oxidation of the ozone molecule. This leads to the production of OH radicals. Therefore, it is reasonable to assume that reaction is carried out in the bulk of the solution and the rate is independent of catalyst’s surface area. This is probably the reason for similar reaction rates of different particle sizes of nano-Zno catalysts. Additionally three different metal oxides (ZnO, Mn2O3 and Fe2O3) loaded on ƴ-alumina and ƴ-alumina (metal oxide-free) were used in catalytic ozonation of aquatic atrazine samples. The findings substantiate the strong influence of molecular ozone on degradation of ATZ and the partial involvement of hydroxyl radicals in the mechanism. Based on adsorption studies, atrazine has a low affinity towards adsorption on the surface of the catalysts. It is logical to assume that ozone reacts with the hydroxyl groups of the catalyst to form a highly reactive metal-ozone complex. This layer could react with a molecule of atrazine through an electron-transfer mechanism. The residual concentration of ATZ and total organic carbon (TOC) were determined by High Performance Liquid Chromatography (HPLC) and Total Organic Carbon (TOC) analyses.
25

Development of Catalytic Enantioselective Approaches for the Synthesis of Carbocycles and Heterocycles

Deiana, Luca January 2013 (has links)
In biological systems, most of the active organic molecules are chiral. Some of the main constituents of living organisms are amino acids and sugars. They exist predominantly in only one enantiomerically pure form. For example, our proteins are built-up by L-amino acids and as a consequence they are enatiomerically pure and will interact in different ways with enantiomers of chiral molecules. Indeed, different enantiomers or diastereomers of a molecule could often have a drastically different biological activity. It is of paramount importance in organic synthesis to develop new routes to control and direct the stereochemical outcome of reactions. The aim of this thesis is to investigate new protocols for the synthesis of complex chiral molecules using simple, environmentally friendly proline-based organocatalysts. We have investigated, the aziridination of linear and branched enals, the stereoselective synthesis of β-amino acids with a carbene co-catalyst, the synthesis of pyrazolidines, the combination of heterogeneous transition metal catalysis and amine catalysis to deliver cyclopentenes bearing an all-carbon quaternary stereocenter and a new heterogeneous dual catalyst system for the carbocyclization of enals. The reactions presented in this thesis afforded the corresponding products with high levels of chemo-, diastero- and enantioselectivity. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 5: Submitted. </p>
26

The effect of high pressure gasses on heterogeneous catalysts

Mitchell, Robert G. L. January 2009 (has links)
Several heterogeneously catalysed reactions have been studied at pressures above and below the critical pressure of carbon dioxide in both carbon dioxide and nitrogen. The purpose of this study was to ascertain if carbon dioxide above its critical pressure and temperature would have a beneficial effect on the active life time of the catalysts When the Beckmann rearrangement of cyclohexanone oxime was studied it was discovered that using carbon dioxide above its critical pressure and temperature was beneficial to catalyst lifetime at both 250°C and 300°C, however the beneficial effect was also observed in nitrogen under the same conditions. It is proposed that the benefits at higher pressures are due to an increased residence time in the reactor or increased competition for active sites. When the process was performed at 380°C, a previously unreported impurity was observed in the collected samples. This was shown to be N-ethyl caprolactam, it is proposed that this is formed by a Ritter style reaction with 5-cyanopent-1-ene known to be formed during the reaction When the Fries rearrangement of phenyl acetate was studied it was discovered that increasing reactor pressure appeared to have little or no effect on the catalyst; it is thought this is because the reaction temperature of 150°C is below the boiling point of phenyl acetate, and that the reaction being observed occurs purely in the liquid phase. When the Diels-Alder addition of isoprene to methyl acrylate was studied, it was discovered that using carbon dioxide above its critical pressure had the effect of improving catalyst lifetime and conversion to desired product, with the greatest effect being at 50 bar. It was discovered that using nitrogen under the same conditions led to a greater improvement in conversion and catalyst lifetime. It is thought that the reactions in carbon dioxide are in a near critical state at 50 bar leading to the maximum effect at this pressure, and at higher pressures the reactions are bi- or multi-phasic, leading to the decrease in the effect. In the process of studying the above reactions an effective rig for the study of high pressure heterogeneously catalysed reactions was built.
27

Investigations into surface-confined covalent organic frameworks : towards developing novel enantioselective heterogeneous catalysts

Greenwood, John January 2013 (has links)
There is an increasing necessity for the pharmaceutical industry to develop enantiomerically pure drugs. Up till now, production of enantiomerically pure molecules has been provided by harvesting them from plants or utilising homogeneous catalysis and biocatalysis. None of these methods are efficient means of production, and attention is now being directed towards heterogeneous enantioselective catalysis as the preferred technique. This is on account of the high product yield and ease of separation of catalyst from the reaction mixture. Over the past few decades, a great deal of research has been conducted into investigating the Ni catalysed hydrogenation of β-ketoesters and Pt catalysed hydrogenation of α-ketoesters. These are the most successful systems for enantioselective heterogeneous catalysis. However, they are unsuitable for industrial purposes due to the low thermal and mechanical stability of the modified surfaces. The main goal throughout this project has been the investigation of surface-confined covalent reactions. The motivation of this research is to develop enantioselective heterogeneous catalysis; covalent networks are believed to infer the necessary thermal and chemical stability required to chirally modify catalytic surfaces for docking interactions with reactant species. Covalent organic frameworks (COFs) on surfaces hold potential for a number of chemical applications, and not just in the field of heterogeneous catalysis; for example in areas such as molecular electronics and templating.
28

Continuous Zeolite Crystallization in Micro-Batch Segmented Flow

Vicens, Jim 25 April 2018 (has links)
Zeolites are porous aluminosilicates that occur both naturally and synthetically, having numerous applications in catalysis, adsorption and separations. Despite over a half century of characterization and synthetic optimization of hundreds of frameworks, the exact mechanism of synthesis remains highly contested, with crystallization typically occurring under transport-limited regimes. In this work, a microcrystallization reactor working under segmented oscillatory flow has been designed to produce a semi-continuous flow of zeolite A. The fast injection of the reactants in a mixing section forms droplets of aqueous precursors in a stream of paraffin, dispersing microdroplets and avoiding any clog from occurring in the system. The crystallization occurred in the system at atmospheric pressure and isothermal conditions (65ºC). This allowed for a rather slow crystallization kinetics which was important to study and highlight the different crystallization mechanisms between flow and batch synthesis. The morphology, size distributions, crystallinity, and porosity were examined by ex-situ characterization of the samples by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and N2 Physisorption to support the conclusions drawn. The size distribution of the particles achieved in the flow reactor was conclusively narrower than the distribution achieved in the batch reactor. The average size of the crystals for both synthesis methods is reported as 400 nm and the crystallinity achieved was comparable between the two. However, the morphology was quite different between the two systems, the flow products having a much higher mesoporosity due to the presence of crystal aggregates at high crystallinity when compared to the batch crystals. Finally, extended crystallization times leads to a decline of the crystallinity of the product, which might be explained by the metastable state of zeolites in solution.
29

Continuous Zeolite Crystallization in Micro-Batch Segmented Flow

Vicens, Jim 25 April 2018 (has links)
Zeolites are porous aluminosilicates that occur both naturally and synthetically, having numerous applications in catalysis, adsorption and separations. Despite over a half century of characterization and synthetic optimization of hundreds of frameworks, the exact mechanism of synthesis remains highly contested, with crystallization typically occurring under transport-limited regimes. In this work, a microcrystallization reactor working under segmented oscillatory flow has been designed to produce a semi-continuous flow of zeolite A. The fast injection of the reactants in a mixing section forms droplets of aqueous precursors in a stream of paraffin, dispersing microdroplets and avoiding any clog from occurring in the system. The crystallization occurred in the system at atmospheric pressure and isothermal conditions (65ºC). This allowed for a rather slow crystallization kinetics which was important to study and highlight the different crystallization mechanisms between flow and batch synthesis. The morphology, size distributions, crystallinity, and porosity were examined by ex-situ characterization of the samples by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and N2 Physisorption to support the conclusions drawn. The size distribution of the particles achieved in the flow reactor was conclusively narrower than the distribution achieved in the batch reactor. The average size of the crystals for both synthesis methods is reported as 400 nm and the crystallinity achieved was comparable between the two. However, the morphology was quite different between the two systems, the flow products having a much higher mesoporosity due to the presence of crystal aggregates at high crystallinity when compared to the batch crystals. Finally, extended crystallization times leads to a decline of the crystallinity of the product, which might be explained by the metastable state of zeolites in solution.
30

Development of Two Dimensional Materials in Photocatalysis

Li, Zizhen 12 August 2019 (has links)
Photocatalysis is a process to convert light energy into chemical energies. This advanced process has been extensively applied in different areas, such as water splitting to evolve hydrogen, organic/ inorganic pollutants decomposition, artificial photosynthesis (CO2 reduction), disinfection, heavy metal recovery, organic synthesis and nitrogen fixation (reduction). The difficulty for photocatalysis applied in practical is primarily due to the low quantum yield as for the high recombination of photogenerated charge carriers. Various strategies have been implemented to overcome these challenges. As recently developed advanced materials, two dimensional materials have attracted lots of attentions as for their superiorities such as large specific surface area and high conductivity. These advantages for two dimensional materials make them be promising cocatalysts in enhance catalytic activity. In this thesis, various two dimensional materials (such as MoS2, SnS, BN as well as C3N4) other than graphene were prepared and investigated in the promotion of photocatalytic activity. Specifically, the focus of present work is on two dimensional materials enhanced photocatalysis in environmental remediation, including organic pollutants detoxification as well as bacteria inactivation. It was found that two dimensional materials, including MoS2, SnS, BN, may be excellent candidates as cocatalysts to enhanced visible-light-driven photocatalytic activity. And g-C3N4 as an effective photocatalyst exhibited excellent photocatalytic oxidation activity, and its activity can be further enhanced with surface modification by hydroxyl functional groups (a modification method reported in the thesis). Suggestions for future work were also proposed in this thesis.

Page generated in 0.072 seconds