Spelling suggestions: "subject:"[een] HEXAPOD ROBOT"" "subject:"[enn] HEXAPOD ROBOT""
1 |
A Walking Strategy for Hexapod Robots on Discontinuous TerrainWei, Kuang-Ting 01 September 2011 (has links)
This thesis sets up terrain parameters and locomotion strategies of a hexapod robot walking on variable and discontinuous terrain. Walking on this kind of terrain is the greatest advantage of legged robots compared with wheeled robots. First, establish a randomly distributed parameterized terrain. Second, set up morphological parameters and dimension parameters of the robot. Third, build kinematic model and generate continuous gaits of the robot, including crab gaits and turning gaits. The locomotion strategy can determine every AEP ,PEP and stride depending on terrain. Finally, verify the strategy through computer programming and find shorter path by calculating if foothold is available in advance. Because of applying randomly distributed parameterized terrain, in addition to describing the terrain more comprehensively, the terrain parameters can be adjusted easily according to different needs. This research will bring about more applications and developments of legged robots.
|
2 |
Design of a hexapod robot using artificial intelligence for the routes of the peruvian andesAbarca, Arnold, Quispe, Grimaldo, Zapata-Ramirez, Gianpierre, Raymundo-Ibanez, Carlos, Rivera, Luis 01 November 2019 (has links)
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / This paper presents an alternative solution to improve the locomotion system of a hexapod robot by artificial intelligence. Through an optimal design to achieve static stability, dynamic stability and optimize energy consumption through an autonomous system that is able to perform trajectories without any inconvenience. For the robot to move without flaws has certain restrictions in design (weight, size, materials, etc.) The hexapod has a high degree of movement and this allows many trajectories handle at the time of travel. Using sensors under certain working conditions we will obtain the necessary data and signals to satisfactorily comply with the hexapod robot design. / Revisión por pares
|
3 |
Biologically-inspired control of an insect-like hexapod robot on rough terrainEspenschied, Kenneth Scot January 1994 (has links)
No description available.
|
4 |
State estimation of a hexapod robot using a proprioceptive sensory system / Estelle LubbeLubbe, Estelle January 2014 (has links)
The Defence, Peace, Safety and Security (DPSS) competency area within the Council for Scientific and
Industrial Research (CSIR) has identified the need for the development of a robot that can operate in
almost any land-based environment. Legged robots, especially hexapod (six-legged) robots present a
wide variety of advantages that can be utilised in this environment and is identified as a feasible
solution.
The biggest advantage and main reason for the development of legged robots over mobile (wheeled)
robots, is their ability to navigate in uneven, unstructured terrain. However, due to the complicated
control algorithms needed by a legged robot, most literature only focus on navigation in even or
relatively even terrains. This is seen as the main limitation with regards to the development of legged
robot applications. For navigation in unstructured terrain, postural controllers of legged robots need
fast and precise knowledge about the state of the robot they are regulating. The speed and accuracy
of the state estimation of a legged robot is therefore very important.
Even though state estimation for mobile robots has been studied thoroughly, limited research is
available on state estimation with regards to legged robots. Compared to mobile robots, locomotion
of legged robots make use of intermitted ground contacts. Therefore, stability is a main concern when
navigating in unstructured terrain. In order to control the stability of a legged robot, six degrees of
freedom information is needed about the base of the robot platform. This information needs to be
estimated using measurements from the robot’s sensory system.
A sensory system of a robot usually consist of multiple sensory devices on board of the robot.
However, legged robots have limited payload capacities and therefore the amount of sensory devices
on a legged robot platform should be kept to a minimum. Furthermore, exteroceptive sensory devices
commonly used in state estimation, such as a GPS or cameras, are not suitable when navigating in
unstructured and unknown terrain. The control and localisation of a legged robot should therefore
only depend on proprioceptive sensors. The need for the development of a reliable state estimation
framework (that only relies on proprioceptive information) for a low-cost, commonly available
hexapod robot is identified. This will accelerate the process for control algorithm development.
In this study this need is addressed. Common proprioceptive sensors are integrated on a commercial
low-cost hexapod robot to develop the robot platform used in this study. A state estimation
framework for legged robots is used to develop a state estimation methodology for the hexapod
platform. A kinematic model is also derived and verified for the platform, and measurement models
are derived to address possible errors and noise in sensor measurements. The state estimation
methodology makes use of an Extended Kalman filter to fuse the robots kinematics with
measurements from an IMU. The needed state estimation equations are also derived and
implemented in Matlab®.
The state estimation methodology developed is then tested with multiple experiments using the robot
platform. In these experiments the robot platform captures the sensory data with a data acquisition
method developed while it is being tracked with a Vicon motion capturing system. The sensor data is
then used as an input to the state estimation equations in Matlab® and the results are compared to
the ground-truth measurement outputs of the Vicon system. The results of these experiments show
very accurate estimation of the robot and therefore validate the state estimation methodology and
this study. / MIng (Computer and Electronic Engineering), North-West University, Potchefstroom Campus, 2015
|
5 |
State estimation of a hexapod robot using a proprioceptive sensory system / Estelle LubbeLubbe, Estelle January 2014 (has links)
The Defence, Peace, Safety and Security (DPSS) competency area within the Council for Scientific and
Industrial Research (CSIR) has identified the need for the development of a robot that can operate in
almost any land-based environment. Legged robots, especially hexapod (six-legged) robots present a
wide variety of advantages that can be utilised in this environment and is identified as a feasible
solution.
The biggest advantage and main reason for the development of legged robots over mobile (wheeled)
robots, is their ability to navigate in uneven, unstructured terrain. However, due to the complicated
control algorithms needed by a legged robot, most literature only focus on navigation in even or
relatively even terrains. This is seen as the main limitation with regards to the development of legged
robot applications. For navigation in unstructured terrain, postural controllers of legged robots need
fast and precise knowledge about the state of the robot they are regulating. The speed and accuracy
of the state estimation of a legged robot is therefore very important.
Even though state estimation for mobile robots has been studied thoroughly, limited research is
available on state estimation with regards to legged robots. Compared to mobile robots, locomotion
of legged robots make use of intermitted ground contacts. Therefore, stability is a main concern when
navigating in unstructured terrain. In order to control the stability of a legged robot, six degrees of
freedom information is needed about the base of the robot platform. This information needs to be
estimated using measurements from the robot’s sensory system.
A sensory system of a robot usually consist of multiple sensory devices on board of the robot.
However, legged robots have limited payload capacities and therefore the amount of sensory devices
on a legged robot platform should be kept to a minimum. Furthermore, exteroceptive sensory devices
commonly used in state estimation, such as a GPS or cameras, are not suitable when navigating in
unstructured and unknown terrain. The control and localisation of a legged robot should therefore
only depend on proprioceptive sensors. The need for the development of a reliable state estimation
framework (that only relies on proprioceptive information) for a low-cost, commonly available
hexapod robot is identified. This will accelerate the process for control algorithm development.
In this study this need is addressed. Common proprioceptive sensors are integrated on a commercial
low-cost hexapod robot to develop the robot platform used in this study. A state estimation
framework for legged robots is used to develop a state estimation methodology for the hexapod
platform. A kinematic model is also derived and verified for the platform, and measurement models
are derived to address possible errors and noise in sensor measurements. The state estimation
methodology makes use of an Extended Kalman filter to fuse the robots kinematics with
measurements from an IMU. The needed state estimation equations are also derived and
implemented in Matlab®.
The state estimation methodology developed is then tested with multiple experiments using the robot
platform. In these experiments the robot platform captures the sensory data with a data acquisition
method developed while it is being tracked with a Vicon motion capturing system. The sensor data is
then used as an input to the state estimation equations in Matlab® and the results are compared to
the ground-truth measurement outputs of the Vicon system. The results of these experiments show
very accurate estimation of the robot and therefore validate the state estimation methodology and
this study. / MIng (Computer and Electronic Engineering), North-West University, Potchefstroom Campus, 2015
|
6 |
LOCOMOTION CONTROL EXPERIMENTS IN COCKROACH ROBOT WITH ARTIFICIAL MUSCLESChoi, Jongung 31 May 2005 (has links)
No description available.
|
7 |
Roboto trajektorijos optimizavimas / Optimization of Robot TrajectoryLuneckas, Tomas 09 July 2009 (has links)
Baigiamajame magistro darbe nagrinėjamas šešiakojo roboto judėjimas. Pateikiami vienos kojos atvirkštinės kinematikos uždavinio sprendimai Denavito ir Hartenbergo bei geometriniu metodais. Analizuojamas vienos kojos trajektorijos sudarymo metodas ir pateikiams jos aprašymo būdas. Pateikiami galimi trajektorijų pavyzdžiai. Sudaroma trikojės roboto eisenos seka bei diagrama. Darbe pateikiamas roboto valdymo algoritmas ir valdymo programa, atsižvelgiant į apibrėžtus variklių valdymo kriterijus. Eksperimentiškai tiriamas roboto judėjimas lygiu paviršiumi taikant trikoję eiseną. Pagal rezultatus koreguojama eisena. Atliekami trajektorijos pakartojimo tikslumo bandymai. Įvertinus rezultatus pateikiamos baigiamojo darbo išvados ir pasiūlymai. / Hexapod robot locomotion is analyzed in this paper. Inverse kinematics solutions are proposed for one leg using Denavit-Hartenberg and geometric methods. Trajectory forming for one leg is analyzed and solution for delineating trajectory is introduced. Possible leg trajectory examples are presented. Tripod gait sequence and diagram is designed for robot. Work presents robot control algorithm and program according to motor control parameters. Robot locomotion over regular terrain using tripod gait is tested. Gait then is corrected according to test results. Tests are made for trajectory repeating accuracy. Conclusions and solutions are made according to results.
|
8 |
Konstrukce kráčejícího mobilního robotu / Design of walking mobile robotSzabari, Mikuláš January 2018 (has links)
The diploma thesis deals with the construction of a walking mobile robot, which is intended for passing through a rugged or forest terrain, whose task is to collect the sample. The first part is devoted to the review of walking robots. Follow-up an analysis of two-legged and four-leg walking robot technologies and a brief overview of drives. The second part is devoted to problem analysis and design variant. The work contains 4 design variants in the form of schemes. Using the multi-criteria analysis, the variants were evaluated and the optimal variant was chosen taking into account the representative parameters. The third part is devoted to the construction of the chosen variant, it is divided into body and leg construction. The overall design is processed in the form of a virtual 3D model. In the leg construction, the design itself, but also the calculations of drives, shafts, gears and belt transmissions are solved. The end of the thesis is devoted to drawing documentation based on 3D model and economic evaluation. Follow-up and discussion with possible continuation and use in practice.
|
9 |
[pt] CONTROLE POR MODOS DESLIZANTES DE ROBÔS COM UMA E MÚLTIPLAS PERNAS / [en] SLIDING MODE CONTROL FOR SINGLE- AND MULTI-LEGGED ROBOTSGUILHERME NERI DE SOUZA 18 May 2021 (has links)
[pt] Nos últimos anos, os robôs móveis com pernas têm despertado o
interesse da comunidade robótica, pois tais mecanismos apresentam maior
versatilidade em relação aos robôs móveis de rodas e aéreos. Neste trabalho,
o autor considera o problema de modelagem e projeto de controle robusto
para uma classe de robôs móveis com pernas usando a abordagem de
controle por modos deslizantes. Um estudo comparativo entre um algoritmo
de planejamento baseado em técnicas de Fourier e controladores via modo
deslizante é apresentado para o problema de estabilização de um robô móvel
saltitante na fase de vôo. O autor também propõe a estabilização da postura
de robôs móveis multipernas, como hexapod e robô bípede, utilizando duas
abordagens de controle diferentes, o controle de regulação Cartesiana e o
controle via modos deslizantes. A teoria de estabilidade de Lyapunov é usada
para demonstrar as propriedades de estabilidade dos sistemas de controle em
malha-fechada. Simulações numéricas em ambiente de simulação MATLAB
e simulações computacionais em Gazebo, um simulador robótico 3D de
código aberto, são incluídas para ilustrar o desempenho e a viabilidade
da metodologia proposta. / [en] In the last years, legged mobile robots have increased the interest of
the robotics community because such mechanisms have higher versatility
compared to wheeled and aerial mobile robots. These characteristics make
robot with legs a viable solution for rescue and monitoring operations
in irregular terrains and difficult to access locations. Although singlelegged
or multi-legged mechanisms can transverse any terrain, some of their
disadvantages are higher complexity in modelling and control design and
higher power consumption. In this work, the author considers the problem
of modelling and robust control design for a class of legged mobile robots
using the sliding mode control approach. A comparative study between a
planning algorithm based on Fourier techniques and sliding mode controllers
is presented for the stabilization problem of a hopping robot in flight
phase. The author also proposes the stabilization of the posture of multilegged
mobile robots such as, hexapod and biped robot, using two different
control approaches, the Cartesian regulation control and the sliding mode
control. The Lyapunov stability theory is used to demonstrate the stability
properties of the closed-loop control systems. Numerical simulations in
MATLAB simulation software and computer simulations in Gazebo, an
open-source 3D robotic simulator, are included to illustrate the performance
and feasibility of the propose methodology.
|
10 |
Biologicky inspirovaní roboti - brouk / Bio-inspired robots - hexapodVymazal, Aleš January 2020 (has links)
Hexapod, ROS, Gazebo, Simulation, C++, Python, Node, Service, Publisher, Subscriber, Topic, URDF, SDF, AX-12+, USB2Dynamixel, CM-530, King Spider, Robotis, Navigation
|
Page generated in 0.2719 seconds