Spelling suggestions: "subject:"[een] HOLDER REGULARITY"" "subject:"[enn] HOLDER REGULARITY""
1 |
Propriétés analytiques et diophantiennes de certaines séries de Fourier arithmétiques / Analytic and Diophantine properties of certain arithmetic Fourier seriesPetrykiewicz, Izabela 29 September 2014 (has links)
Nous considérons certaines séries de Fourier liées à la théorie des formes modulaires. Nous étudions leurs propriétés analytiques : la dérivabilité, le module de continuité et l'exposant de Hölder. Nous utilisons deux méthodes différentes. La première revient à trouver et itérer une équation fonctionnelle de la fonction étudiée (méthode d'Itatsu) et la deuxième provient de l'analyse en ondelettes (méthode de Jaffard). L'étape essentielle de chacune dépend de la modularité sous-jacente. Nous trouvons que les propriétés analytiques de ces séries aux points irrationnels sont liées aux propriétés diophantiennes de ces points. Ce travail a été motivé par l'étude de la fonction de Riemann. / We consider certain Fourier series which arise from modular or automorphicforms. We study their analytic properties: differentiability, modulus of continuity and theH¨older regularity exponent. We use two different methods. One is based on finding anditerating a functional equation for the function studied (Itatsu’s method), the second onecomes from wavelet analysis (Jaffard’s method). The crucial steps in both of them arebased on the underlined modularity. We find that the analytic properties of these seriesat an irrational x are related to the fine diophantine properties of x, in a very precise way.The work was motivated by the study of the Riemann series.
|
2 |
[en] EXISTENCE AND REGULARITY OF SOLUTIONS: NONLOCAL AND NONLINEAR MODELS / [pt] EXISTÊNCIA E REGULARIDADE DE SOLUÇÕES: MODELOS NÃO LOCAIS E NÃO LINEARESEDISON FAUSTO CUBA HUAMANI 14 September 2021 (has links)
[pt] Estudamos duas classes de equações diferenciais parciais, nomeadamente:
uma equação de transferência radiativa e uma equação do calor
duplamente não-linear. O primeiro modelo envolve uma equação não-local,
na presença de um operador de espalhamento. Estuda-se a boa colocação do problema no semi-plano, no regime peaked. Prova-se um lema de averaging,
que produz regularidade interior para o problema, além de regularização
fracionária para as derivadas temporais da solução. O segundo conjunto
de resultados da tese trata de uma equação de Trudinger com graus de
não-linearidade distintos. Aproxima-se este problema pela p-equação do calor
e importa-se regularidade da última para a primeira. Como consequência,
mostra-se um resultado de regularidade melhorada no contexto não homogêneo. / [en] We consider two classes of partial differential equations. Namely: the
radiative transfer equation and a doubly nonlinear model. The former concerns
a nonlocal problema, driven by a scattering operator. We study the
well-posedness of solutions in the peaked regime, for the half-space. A new
averaging lemma yields interior regularity for the solutions and improved
fractional regularization for the time derivatives. The second model we examine
is a Trudinger equation with distinct nonlinearities degrees. Inspired
by ideas launched by L. Caffarelli, we resort to approximation methods and
prove improved regularity results for the solutions. The strategy is to relate
our equation with p-caloric functions.
|
Page generated in 0.0447 seconds