• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 212
  • 155
  • 77
  • 20
  • 9
  • 7
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 546
  • 188
  • 79
  • 70
  • 66
  • 65
  • 54
  • 54
  • 54
  • 49
  • 44
  • 43
  • 43
  • 41
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Numerical homogenization of a rough bi-material interface

Lallemant, Lucas 24 May 2011 (has links)
The mechanical reliability of electronic components has become harder and harder to predict due to the use of composite materials. One of the key issues is creating an accurate model of the delamination mechanism, which consists in the separation of two different bounded materials. This phenomenon is a very challenging issue that is investigated in the Nano Interface Project (NIP), in which this thesis is involved. The macroscopic adhesion force is governed by several parameters described at different length scales. Among these parameters, the roughness profile of the interface has a pronounced influence. The main difficulty for an accurate delamination characterization is then investigating the effects of this roughness profile and the modifications it implies for the overall cohesion. The objective of the NIP is to develop an interface model for the numerical testing of electronic components in a finite element software. The problem is that a direct modeling of all the mechanisms described previously is really expensive in term of computation time, if possible at all. This difficulty is increased by the huge mismatch of the mechanical properties of the materials in contact. A scale transition method is therefore required, which is provided by homogenization. The idea is to consider the delamination at a wider scale. Rather than modeling the whole roughness profile, the adhesion at the interface will be described by homogenized, or macroscopic, parameters extracted from a representative model at the micro-scale, the RVE. This thesis will deal with the determination of these homogenized parameters.
132

Integral equation methods for fracture mechanics and micro-mechanical problems

Jonsson, Anders January 2002 (has links)
No description available.
133

Topology optimization for additive manufacturing of customized meso-structures using homogenization and parametric smoothing functions

Sundararajan, Vikram Gopalakrishnan 16 February 2011 (has links)
Topology optimization tools are useful for distributing material in a geometric domain to match targets for mass, displacement, structural stiffness, and other characteristics as closely as possible. Topology optimization tools are especially applicable to additive manufacturing applications, which provide nearly unlimited freedom for customizing the internal and external architecture of a part. Existing topology optimization tools, however, do not take full advantage of the capabilities of additive manufacturing. Prominent tools use micro- or meso-scale voids or artificial materials to parameterize the topology optimization problem, but they use filters, penalization functions, and other schemes to force convergence to regions of fully dense (solid) material and fully void (open) space in the final structure as a means of accommodating conventional manufacturing processes. Since additive manufacturing processes are capable of fabricating intermediate densities (e.g., via porous mesostructures), significant performance advantages could be achieved by preserving and exploiting those features during the topology optimization process. Towards this goal, a topology optimization tool has been created by combining homogenization with parametric smoothing functions. Rectangular mesoscale voids are used to represent material topology. Homogenization is used to analyze its properties. B-spline based parametric smoothing functions are used to control the size of the voids throughout the design domain, thereby smoothing the topology and reducing the number of required design variables relative to homogenization-based approaches. Resulting designs are fabricated with selective laser sintering technology, and their geometric and elastic properties are evaluated experimentally. / text
134

Multiscale Analytical Solutions and Homogenization of n-Dimensional Generalized Elliptic Equations

Sviercoski, Rosangela January 2005 (has links)
In this dissertation, we present multiscale analytical solutions, in the weak sense, to the generalized Laplace's equation in Ω ⊂ Rⁿ, subject to periodic and nonperiodic boundary conditions. They are called multiscale solutions since they depend on a coefficient which takes a wide possible range of scales. We define forms of nonseparable coefficient functions in Lᵖ(Ω) such that the solutions are valid for the periodic and nonperiodic cases. In the periodic case, one such solution corresponds to the auxiliary cell problem in homogenization theory. Based on the proposed analytical solution, we were able to write explicitly the analytical form for the upscaled equation with an effective coefficient, for linear and nonlinear cases including the one with body forces. This was done by performing the two-scale asymptotic expansion for linear and nonlinear equations in divergence form with periodic coefficient. We proved that the proposed homogenized coefficient satisfies the Voigt-Reiss inequality. By performing numerical experiments and error analyses, we were able to compare the heterogeneous equation and its homogenized approximation in order to define criteria in terms of allowable heterogeneity in the domain to obtain a good approximation. The results presented, in this dissertation, have laid mathematical groundwork to better understand and apply multiscale processes under a deterministic point of view.
135

Optimisation of passive shimming techniques for magnetic-resonance imaging

Evans, Christopher John January 1999 (has links)
No description available.
136

Generalized spatial homogenization method in transport theory and high order diffusion theory energy recondensation methods

Yasseri, Saam 03 April 2013 (has links)
In this dissertation, three different methods for solving the Boltzmann neutron transport equation (and its low-order approximations) are developed in general geometry and implemented in 1D slab geometry. The first method is for solving the fine-group diffusion equation by estimating the in-scattering and fission source terms with consistent coarse-group diffusion solutions iteratively. This is achieved by extending the subgroup decomposition method initially developed in neutron transport theory to diffusion theory. Additionally, a new stabilizing scheme for on-the-fly cross section re-condensation based on local fixed source calculations is developed in the subgroup decomposition framework. The method is derived in general geometry and tested in 1D benchmark problems characteristic of Boiling Water Reactors (BWR) and Gas Cooled Reactor (GCR). It is shown that the method reproduces the standard fine-group results with 3-4 times faster computational speed in the BWR test problem and 1.5 to 6 times faster computational speed in the GCR core. The second method is a hybrid diffusion transport method for accelerating multi-group eigenvalue transport problems. This method extends the subgroup decomposition method to efficiently couple a coarse-group high-order diffusion method with a set of fixed-source transport decomposition sweeps to obtain the fine-group transport solution. The advantages of this new high-order diffusion theory are its consistent transport closure, straight forward implementation and numerical stability. The method is analyzed for 1D BWR and High Temperature Test Reactor (HTTR) benchmark problems. It is shown that the method reproduces the fine-group transport solution with high accuracy while increasing the computationally efficiency up to 16 times in the BWR core and up to 3.3 times in the HTTR core compared to direct fine-group transport calculations. The third method is a new spatial homogenization method in transport theory that reproduces the heterogeneous solution by using conventional flux weighted homogenized cross sections. By introducing an additional source term via an “auxiliary cross section” the resulting homogeneous transport equation becomes consistent with the heterogeneous equation, enabling easy implementation into existing solution methods/codes. This new method utilizes on-the-fly re-homogenization, performed at the assembly level, to correct for core environment effects on the homogenized cross sections. The method is derived in general geometry and continuous energy, and implemented and tested in fine-group 1D slab geometries typical of BWR and GCR cores. The test problems include two single assembly and 4 core configurations. It is believed that the coupling of the two new methods, namely the hybrid method for treating the energy variable and the new spatial homogenization method in transport theory set the stage, as future work, for the development of a robust and practical method for highly efficient and accurate whole core transport calculations.
137

Homogenisierungsmethode für den Übergang vom Cauchy- zum Cosserat-Kontinuum

Branke, Dominik 04 April 2013 (has links) (PDF)
Diese Arbeit liefert ein dreidimensionales numerisches Homogenisierungskonzept, welches beim Übergang von der Mikro- zur Makroskala einen Wechsel in der Kontinuumsbeschreibung beinhaltet. Während für die Beschreibung der Makroskala das verallgemeinerte Cosserat-Kontinuum verwendet wird, basiert die Mikroskala auf der klassischen Cauchy-Theorie. Um das homogene Cosserat-Ersatzmaterial im Rahmen numerischer Simulationen nutzen zu können, erfolgt die Implementierung geeigneter Finiter Elemente in das Programmsystem Abaqus und deren Verifikation. Neben der Diskussion der bei der Homogenisierung beobachteten Effekte werden anhand eines idealisierten Modells eines biaxialverstärkten Mehrlagengestrickes die Vorteile gegenüber der klassischen Herangehensweise aufgezeigt. / This contribution provides a threedimensional homogenization approach which includes the switch of the continuum theory during the scale transition. Whereas the microscopic scale is described in the framework of the classical Cauchy theory, the macroscopic scale is based on the generalized Cosserat continuum. In order to use the obtained homogeneous Cosserat material, suitable finite elements are implemented in the commercial program system Abaqus followed by an appropriate verification. Beside the discussion of the arising effects the advantages of this approach compared to the classical procedure are shown by means of an idealized model of a biaxial woven fabric.
138

Human disturbance alters Pacific coral reef fish beta-diversity at three spatial scales

Wiwchar, Logan Douglas 07 March 2014 (has links)
Coral reefs are the most diverse marine ecosystem, but are increasingly threatened by local and global anthropogenic changes. In this thesis, I examine the impact of local stressors on the spatial variability of coral reef fish community composition by modeling the !-diversity of 35 islands across the Pacific Ocean that are characterized by either low or high human disturbance. By examining !-diversity across three spatial scales (within island, within island group, and across island group), and using null models to control for differences in alpha-diversity or abundance, I reveal previously undocumented effects of human disturbance on coral reef fish assemblages. At all scales, human disturbances alter !-diversity. At the largest-scale, islands with high human disturbance have lower incidence- and abundance-based !-diversity, consistent with biotic homogenization. This pattern was driven by both species with high and low abundances that differed across islands. At the smaller two scales (within islands or island groups), the presence of low abundance species is more variable on islands with high human disturbance (manifest in greater incidence-based !-diversity), but these islands have lower abundance-based !- diversity driven by moderately abundant and widespread species. Multivariate techniques show that islands with high human disturbance have a weaker species-environment relationship, and as such, I suggest that homogenization of coral reef fish assemblages by human disturbances is resulting in greater stochasticity of species composition. / Graduate / 0329 / wiwchar@uvic.ca
139

DEFORMATION BEHAVIOR OF A535 ALUMINUM ALLOY UNDER DIFFERENT STRAIN RATE AND TEMPERATURE CONDITIONS

2014 October 1900 (has links)
Aluminum alloys are a suitable substitution for heavy ferrous alloys in automobile structures. The purpose of this study was to investigate the flow stress behavior of as-cast and homogenized A535 aluminum alloy under various deformation conditions. A hot compression test of A535 alloy was performed in the temperature range of 473-673 K (200-400˚C) and strain rate range of 0.005-5 s-1 using a GleebleTM machine. Experimental data were fitted to Arrhenius-type constitutive equations to find material constants such as n, nʹ, β, A and activation energy (Q). Flow stress curves for as-cast and homogenized A535 alloy were predicted using an extended form of the Arrhenius constitutive equations. The dynamic shock load response of the alloy was studied using a split Hopkinson pressure bar (SHPB) test apparatus. The strain rate used ranged from 1400 s-1 to 2400 s-1 for as-cast and homogenized A535 alloy. The microstructures of the deformed specimens under different deformation conditions were analyzed using optical microscopy (OM) and scanning electron microscopy (SEM). Obtained true stress-true strain curves at elevated temperatures showed that the flow stress of the alloy increased by increasing the strain rate and decreasing the temperature for both as-cast and homogenized specimens. The homogenization heat treatment showed no effect on the mechanical behavior of the A535 alloy under hot deformation conditions. Hot deformation activation energy for both as-cast and homogenized A535 alloy was calculated to be 193 kJ/mol, which is higher than that for self-diffusion of pure aluminum (142 kJ/mol). The calculated stress values were compared with the measured ones and they showed good agreement by the correlation coefficient (R) of 0.997 and the average absolute relative error (AARE) of 6.5 %. The peak stress and the critical strain at the onset of thermal softening increased with strain rate for both the as-cast and homogenized A535 alloy. Homogenization heat treatment affected the high strain-rate deformation of the alloy, by increasing the peak stress and the thermal softening onset strain compared to those obtained for as-cast specimens. Deformed shear bands (DSBs) were formed in both the as-cast and homogenized A535 alloy in the strain rate range of 2000-2400 s-1.
140

The Transformative Role Of Representational Media Within The Context Of Contemporary Housing: The Gated Enclaves Of Ankara And Consumer Culture

Oden, Alper 01 December 2004 (has links) (PDF)
The Post-Fordist structure has aroused as a response to the stable/rigid configuration of Fordism that caused a bottleneck within capitalist organization since the mid 1970s. This period is also labeled as flexible accumulation that is based on the least circulation period of capital and as a result turnover time of the consumption objects. Here, consumption becomes a cultural activity besides its role of meeting material necessities and calls for a form of culture, in which the symbolic value of any object is of significance more than its use-value. Within this frame, the study selected a new form of contemporary housing provision as an exemplification area / the gated enclaves that represent a form of investment for the legitimization of values projected by the consumer culture. They are especially located at the new urban development areas, shared by high income level owners / surrounded by exclusionary devices like / walls, fences and private security mechanisms, and provide additional privatized services. This study aims at studying the modes of marketing strategies of these newly emerging housing provisions in Ankara that all are constructed around the theme of &ldquo / a distinct life style&rdquo / through their representational media. Therefore the study will investigate how the idea of distinctness is made public and by means of spatial analyses, how and to what extent the assertion of distinctness is achieved or constituted a genuine position within the academic or professional architectural culture will be investigated while such concepts as &ldquo / homogenization&rdquo / and &ldquo / distinctness&rdquo / will be also in agenda.

Page generated in 0.0358 seconds