• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 268
  • 234
  • 21
  • 16
  • 8
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 666
  • 666
  • 225
  • 218
  • 108
  • 83
  • 81
  • 70
  • 64
  • 49
  • 48
  • 45
  • 45
  • 41
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Application of Boronic Acids in Medicinal Chemistry (Inhibitors, Sensors)

Ni, Nanting 13 April 2010 (has links)
It is well known boronic acids have its unique chemistry and related applications in organic synthesis. The boronic acid functionally group also plays very important roles in medicinal chemistry and chemical biology. For example, boronic acids have been developed as potential therapeutic agents, chemical biology tools. All these applications are directly related to the unique electronic and chemical properties of the boronic acid group. Herein, several application of boronic acids have been studied: 1) several groups of compounds were found as bacterial quorum sensing inhibitors; 2) a boronate compound was developed as a probe for detecting reactive oxygen species (ROS); and 3) boronic acid-modified aptamers can be used for glycoprotein recognition.
222

Effect of hydrogen peroxide and high glucose concentration on the calcium regulatory system of the human vascular endothelial cells in vitro

Mohamed, Ehab 05 1900 (has links)
Many studies have demonstrated that there is a strong relationship between endothelial dysfunction and oxidative stress and have demonstrated also that hyperglycemia is associated with increased generation of oxidative stress and atherosclerotic vascular diseases, but we do not know how hydrogen peroxide (H2O2) and high glucose (HG) could affect calcium regulatory proteins of human vascular endothelial cells (HUVECs) in vitro. In the present study, we have examined the acute effect of H2O2 (100 M) and the effect of chronic exposure to HG concentration (35 mM) on the calcium regulatory system of human vascular endothelial cells using fluorescence imaging microscopy (fura-2). In this study, we tested the hypothesis that calcium regulatory proteins (SERCA-ATPase and PMCA-ATPase pumps and the NCX exchanger) of ECs have different sensitivities to H2O2 and high glucose concentration. We also tested the hypothesis that calcium regulatory proteins could be potential targets of ROS at the early stage of vascular disease. The results of this study showed that both H2O2 and high glucose induced significant delay in calcium removal time (CRT). The study of H2O2 showed that the delay in CRT was due to partial inhibition of SERCA-ATPase and the sodium calcium exchanger (NCX) activity and the effect of H2O2 on CRT was reversible. In contrast, the PMCA-ATPase pump was resistant to inhibition by H2O2. Furthermore, H2O2 induced a 40 ± 6.5 % reduction in endoplasmic reticulum refilling. The second part of the study showed that exposure of ECs to HG concentration for 10 days induced a significant delay in CRT and this delay was due to partial blockade of the SERCA-ATPase pump. Blockade of PMCA-ATPase pump with vanadate showed a further delay in CRT. We conclude that: 1- Both H2O2 and HG affected components of the calcium removal system with different sensitivities; 2- H2O2 and HG did not show any inhibitory effects on the PMCA-ATPase pump; 3- The effect of H2O2 on CRT was reversible; 4- The effect of HG on CRT could be due to increased production of H2O2; 5- The calcium regulatory proteins of ECs could be potential targets for ROS during the early stage of a cardio-vascular disease such as diabetes mellitus.
223

Interaction of Chemical Oxidants with Aquifer Materials

Xu, Xiuyuan January 2006 (has links)
In situ chemical oxidation (ISCO) is a leading-edge technology for soil and groundwater remediation, and involves injecting a chemical oxidant (e. g. , permanganate, hydrogen peroxide, or persulfate) into the subsurface to deplete contaminant mass through oxidation. Since the delivery of the chosen oxidant to the target treatment zone must occur in situ, the interaction between the injected oxidant and the aquifer material is a key controlling factor for a successful ISCO application. While many published ISCO studies have focused on the interaction between an oxidant and target contaminants, many questions still remain on the interaction between a potential oxidant and the aquifer material. Through a series of bench-scale experiments with aquifer materials collected from 10 sites throughout North America, the research presented in this thesis provides insight into the interaction between these aquifer materials and two widely used ISCO oxidants; permanganate and hydrogen peroxide. <br /><br /> The investigation into the interaction between aquifer materials and permanganate consisted of three series of bench-scale experiments: (1) long-term batch experiments which were used to investigate permanganate consumption in response to fundamental geochemical properties of the aquifer materials, (2) short-term batch experiments which were designed to yield kinetic data that describe the behavior of permanganate in the presence of various aquifer materials, and (3) column experiments which were used to investigate permanganate transport in a system that mimics the subsurface environment. The long-term experiments which involved more than 180 batch reactors monitored for ~300 days showed that the unproductive permanganate consumption by aquifer materials or natural oxidant demand (NOD) is strongly affected by the initial permanganate concentration, permanganate to solid mass ratio, and the reductive components associated with each aquifer material. This consumption cannot be represented by an instantaneous reaction process but is kinetically controlled by at least a fast and slow reactive component. Accordingly, an empirical expression for permanganate NOD in terms of aquifer material properties, and a hypothetical kinetic model consisting of two reaction components were developed. In addition, a fast and economical permanganate NOD estimation procedure based on a permanganate COD test was developed and tested. The investigation into short-term permanganate consumption (time scale of hours) was based on the theoretical derivation of the stoichiometric reaction of permanganate with bulk aquifer material reductive components, and consisted of excess permanganate mass experiments and excess aquifer material mass experiments. The results demonstrated that permanganate consumption by aquifer materials can be characterized by a very fast reaction on the order of minutes to hours, confirming the existence of the fast reaction component of the hypothetical kinetic model used to describe the long-term permanganate NOD observations. A typical experimental column trial consisted of flushing an aquifer-material packed column with the permanganate source solution until sufficient permanganate breakthrough was observed. The permanganate column results indicated the presence of a fast and slow consumption rate consistent with the long-term batch test data, and an intermediate consumption rate affecting the shape of the rising limb of the breakthrough curve. Finally, a comparison of the experimental results between batch and column systems indicated that permanganate NOD was significantly overestimated by the batch experiments; however, permanganate consumption displayed some similarity between the batch and column systems and hence an empirical expression was developed to predict permanganate consumption in physically representative column systems from batch reactor data. <br /><br /> The interaction between hydrogen peroxide and aquifer materials was also investigated with both batch and column experiments. A series of batch experiments consisting of a mixture of 2% hydrogen peroxide and 15 g of aquifer materials was used to capture the overall hydrogen peroxide behavior in the presence of various aquifer materials. The results indicated that the decomposition of hydrogen peroxide in the presence of various aquifer materials followed a first-order rate law, and was strongly affected by the content of amorphous transition metals (i. e. , Fe and Mn). Although hydrogen peroxide decomposition is related to the total organic carbon (TOC) content of natural aquifer materials, the results from a two-week long exposure to hydrogen peroxide suggests that not all forms of natural organic matter contributed to this decomposition. A multiple linear regression analysis was used to generate predictive relationships to estimate hydrogen peroxide decomposition rate coefficients based on various aquifer material properties. The enhanced stability of hydrogen peroxide was investigated under six scenarios with the addition of chelating reagents. The impact of a new green chelating reagent, S,S'-ethylenediaminedisuccinate (EDDS), on the stability of hydrogen peroxide in the presence of aquifer materials was experimentally examined and compared to that of the traditional and widely used chelating reagent, Ethylenediaminetetraacetic (EDTA). The results demonstrated that EDDS was able to significantly increase the stability of hydrogen peroxide, especially for aquifer materials with low TOC contents and/or high dissolvable Fe and Mn contents. Finally, to complement and expand the findings from the batch experiments, column experiments were conducted with aquifer materials from five representative sites. Each column was flushed with two types of source solutions (with or without EDDS addition) at two flow rates. The column experiments showed that the use of EDDS resulted in an earlier breakthrough and a higher stable concentration of hydrogen peroxide relative to the case without the addition of EDDS. The hydrogen peroxide decomposition rate coefficients generated from the column data were significantly higher than those generated from the batch test data and no correlation between hydrogen peroxide decomposition coefficients obtained from column and batch experiments was observed. Based on the column experimental results, a one-dimensional transport model was also calibrated to capture the hydrogen peroxide breakthrough process. <br /><br /> Data from bench-scale tests are routinely used to support both ISCO design and site screening, and therefore the findings from this study can be used as guidance on the utility of these tests to generate reliable and useful information. In general, the behavior of both permanganate and hydrogen peroxide in the presence of aquifer materials in batch and the column systems clearly indicates that the use of batch test data for ISCO system design is questionable since column experiments are believed to mimic in situ conditions better since column systems provide more realistic aquifer material contact. Thus the scaling relationships developed in this study provide meaningful tools to transfer information obtained from batch systems, which are widely employed in most bench-scale studies, to column systems.
224

Interaction of Chemical Oxidants with Aquifer Materials

Xu, Xiuyuan January 2006 (has links)
In situ chemical oxidation (ISCO) is a leading-edge technology for soil and groundwater remediation, and involves injecting a chemical oxidant (e. g. , permanganate, hydrogen peroxide, or persulfate) into the subsurface to deplete contaminant mass through oxidation. Since the delivery of the chosen oxidant to the target treatment zone must occur in situ, the interaction between the injected oxidant and the aquifer material is a key controlling factor for a successful ISCO application. While many published ISCO studies have focused on the interaction between an oxidant and target contaminants, many questions still remain on the interaction between a potential oxidant and the aquifer material. Through a series of bench-scale experiments with aquifer materials collected from 10 sites throughout North America, the research presented in this thesis provides insight into the interaction between these aquifer materials and two widely used ISCO oxidants; permanganate and hydrogen peroxide. <br /><br /> The investigation into the interaction between aquifer materials and permanganate consisted of three series of bench-scale experiments: (1) long-term batch experiments which were used to investigate permanganate consumption in response to fundamental geochemical properties of the aquifer materials, (2) short-term batch experiments which were designed to yield kinetic data that describe the behavior of permanganate in the presence of various aquifer materials, and (3) column experiments which were used to investigate permanganate transport in a system that mimics the subsurface environment. The long-term experiments which involved more than 180 batch reactors monitored for ~300 days showed that the unproductive permanganate consumption by aquifer materials or natural oxidant demand (NOD) is strongly affected by the initial permanganate concentration, permanganate to solid mass ratio, and the reductive components associated with each aquifer material. This consumption cannot be represented by an instantaneous reaction process but is kinetically controlled by at least a fast and slow reactive component. Accordingly, an empirical expression for permanganate NOD in terms of aquifer material properties, and a hypothetical kinetic model consisting of two reaction components were developed. In addition, a fast and economical permanganate NOD estimation procedure based on a permanganate COD test was developed and tested. The investigation into short-term permanganate consumption (time scale of hours) was based on the theoretical derivation of the stoichiometric reaction of permanganate with bulk aquifer material reductive components, and consisted of excess permanganate mass experiments and excess aquifer material mass experiments. The results demonstrated that permanganate consumption by aquifer materials can be characterized by a very fast reaction on the order of minutes to hours, confirming the existence of the fast reaction component of the hypothetical kinetic model used to describe the long-term permanganate NOD observations. A typical experimental column trial consisted of flushing an aquifer-material packed column with the permanganate source solution until sufficient permanganate breakthrough was observed. The permanganate column results indicated the presence of a fast and slow consumption rate consistent with the long-term batch test data, and an intermediate consumption rate affecting the shape of the rising limb of the breakthrough curve. Finally, a comparison of the experimental results between batch and column systems indicated that permanganate NOD was significantly overestimated by the batch experiments; however, permanganate consumption displayed some similarity between the batch and column systems and hence an empirical expression was developed to predict permanganate consumption in physically representative column systems from batch reactor data. <br /><br /> The interaction between hydrogen peroxide and aquifer materials was also investigated with both batch and column experiments. A series of batch experiments consisting of a mixture of 2% hydrogen peroxide and 15 g of aquifer materials was used to capture the overall hydrogen peroxide behavior in the presence of various aquifer materials. The results indicated that the decomposition of hydrogen peroxide in the presence of various aquifer materials followed a first-order rate law, and was strongly affected by the content of amorphous transition metals (i. e. , Fe and Mn). Although hydrogen peroxide decomposition is related to the total organic carbon (TOC) content of natural aquifer materials, the results from a two-week long exposure to hydrogen peroxide suggests that not all forms of natural organic matter contributed to this decomposition. A multiple linear regression analysis was used to generate predictive relationships to estimate hydrogen peroxide decomposition rate coefficients based on various aquifer material properties. The enhanced stability of hydrogen peroxide was investigated under six scenarios with the addition of chelating reagents. The impact of a new green chelating reagent, S,S'-ethylenediaminedisuccinate (EDDS), on the stability of hydrogen peroxide in the presence of aquifer materials was experimentally examined and compared to that of the traditional and widely used chelating reagent, Ethylenediaminetetraacetic (EDTA). The results demonstrated that EDDS was able to significantly increase the stability of hydrogen peroxide, especially for aquifer materials with low TOC contents and/or high dissolvable Fe and Mn contents. Finally, to complement and expand the findings from the batch experiments, column experiments were conducted with aquifer materials from five representative sites. Each column was flushed with two types of source solutions (with or without EDDS addition) at two flow rates. The column experiments showed that the use of EDDS resulted in an earlier breakthrough and a higher stable concentration of hydrogen peroxide relative to the case without the addition of EDDS. The hydrogen peroxide decomposition rate coefficients generated from the column data were significantly higher than those generated from the batch test data and no correlation between hydrogen peroxide decomposition coefficients obtained from column and batch experiments was observed. Based on the column experimental results, a one-dimensional transport model was also calibrated to capture the hydrogen peroxide breakthrough process. <br /><br /> Data from bench-scale tests are routinely used to support both ISCO design and site screening, and therefore the findings from this study can be used as guidance on the utility of these tests to generate reliable and useful information. In general, the behavior of both permanganate and hydrogen peroxide in the presence of aquifer materials in batch and the column systems clearly indicates that the use of batch test data for ISCO system design is questionable since column experiments are believed to mimic in situ conditions better since column systems provide more realistic aquifer material contact. Thus the scaling relationships developed in this study provide meaningful tools to transfer information obtained from batch systems, which are widely employed in most bench-scale studies, to column systems.
225

P38(MAPK) negatively regulates monoamine oxidase-A activity as well as its sensitivity to Ca2+

Cao, Xia 04 January 2008 (has links)
Monoamine oxidase (MAO) is a mitochondrial deaminating enzyme that exists as two isoforms, MAO-A and -B. The MAO-mediated reaction generates hydrogen peroxide (H2O2) as a normal by-product. Dysregulation of MAO has been implicated in a variety of neuropsychiatric and neurodegenerative disorders, as well as in the aging process. Endogenous regulators of MAO-A function include calcium (Ca2+) and the p38 mitogen-activated protein kinase (MAPK). Although the effect of p38(MAPK) is thought to rely on induction of mao-A gene expression, post-translational modification of the MAO-A protein is also possible. <p>Using standard biochemical approaches in combination with pharmacological interventions and recombinant DNA strategies, specific aspartic acid residues (within putative Ca2+-binding motifs) were demonstrated to contribute to MAO-A activity. Furthermore, MAO-A activity and its sensitivity to Ca2+ was negatively regulated by the p38(MAPK), which is usually activated during cell stress. The effect of p38(MAPK) on MAO-A function relies specifically on Serine209 in MAO-A, which resides in a p38(MAPK) consensus motif. The serine phosphorylation status of MAO-A determines its capacity for generating peroxy radicals and its toxicity in established cell lines (e.g. C6, N2a, HEK293A, HT-22) and in primary cortical neurons. p38(MAPK)-regulated MAO-A activity is also linked to neurotoxicity associated with the Alzheimer disease-related peptide, Ò-amyloid (AÒ). These data suggest a unique neuroprotective role for p38(MAPK) centered on a negative feedback regulation of the Ca2+-sensitive, H2O2-generating enzyme MAO-A.
226

A cost effective and environmentally friendly stormwater treatment method : The use of wood fly ash and H2O2

Aboubi, Fadoua January 2011 (has links)
This current study is a lab-scale investigation focused on the treatment of stormwater runoff generated in wood-storage areas. The main target constituents of the proposed treatment were: metals (Cu, Cd, Co, V, Pb, Zn, Ni, Cr, Fe, As), COD, TOC, Phenols, and color. The method implemented for this project follows the main concept of using low-cost and environmentally friendly technologies and had as main steps the use of a by-product of wood-based industries - wood fly ashes as sorbents - followed by oxidation with H2O2 (Hydrogen Peroxide). The results obtained during this investigation were vey promising since satisfactory removal % was achieved. Removal rates of 98.5%, 86%, 89.6%, 79.6% were achieved for color, chemical oxygen demand (COD), total organic carbon (TOC) and phenols respectively. Furthermore a decrease in metals concentrations was also observed with the exception of chromium. The study showed that for 300 ml storm water, optimum conditions were with 7g wood fly ash, 5 hours time reaction, pH≈11.46 and 150 μl of a 30% H2O2 solution in a room temperature. To conclude it can be stated that the use of a by-product from wood industry to treat contaminated water from the same sector, following the concept of a closed-loop system, is promising and possible. However further studies need to be conducted in order to evaluate such system in scaled-up conditions.
227

A study of the mechanism of alkali cellulose autoxidation

Mattor, John A. 01 January 1963 (has links)
No description available.
228

The degradation of ethyl 3,4,6-tri-O-methyl-beta-D-arabino-hexopyranosidulose in aqueous alkaline hydrogen peroxide solution

Niebauer, Robert J. (Robert Joseph) 01 January 1979 (has links)
No description available.
229

Hydrogen peroxide delignification in a biomimetic system based on manganese peroxidase

Djerdjouri, Nour-Eddine 12 1900 (has links)
No description available.
230

The Effects Of Hydrogen Peroxide, Gallic Acid And Resveratrol On Growth And Catalase Production Of Aspergillus Fumigatus

Dogan, Tunca 01 February 2008 (has links) (PDF)
The aim of this study was to analyze the effect of hydrogen peroxide and selected phenolic compounds on growth and catalase production of Aspergillus fumigatus. As a result of growing A. fumigatus at different temperatures it was observed that, growth and catalase production of this species were highest at 37 &deg / C. Catalase production was highest in the presence of 1 mM H2O2, yielding a significant 3 fold increase with respect to the control. Biomass was also increased by 1,44 fold with respect to the control sample. H2O2 increased catalase production possibly by inducing oxidative stress as biomass production significantly increased after the depletion of H2O2. Both gallic acid and trans-resveratrol significantly enhanced biomass generation of A. fumigatus (1,17 fold increase at 10 mM gallic acid and 1,45 fold increase at 3 mM resveratrol with respect to controls) and decreased extracellular catalase production (4,33 fold at 25 mM gallic acid and 16,7 fold decrease at 3 mM resveratrol with respect to controls) especially in the first 5 or 6 days of the cultivation where the anti-oxidant activity of the compounds were possibly at their maximum. A sudden and significant rise was observed in extracellular catalase activity between 5th and 7th days of the cultivation in phenolic compound applied samples, possibly owing to the depletion of the antioxidant activity of gallic acid and resveratrol followed by fungal cells&rsquo / response to a sudden increase of oxidative stress by boosting catalase production.

Page generated in 0.052 seconds