• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 28
  • 11
  • 11
  • 10
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 245
  • 245
  • 57
  • 51
  • 41
  • 41
  • 35
  • 34
  • 34
  • 31
  • 30
  • 30
  • 29
  • 25
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Advanced Ti – based AB and AB2 hydride forming materials

Davids, Wafeeq January 2011 (has links)
Doctor Scientiae / Ti – based AB and AB₂ hydride forming materials have shown to be very promising hydrogen storage alloys due to their reasonable reversible hydrogen storage capacity at near ambient conditions, abundance and low cost. However, these materials are not used extensively due to their poor activation performances and poisoning tolerance, resulting insignificant impeding of hydrogen sorption. The overall goal of this project was to develop the knowledge base for solid-state hydrogen storage technology suitable for stationary and special vehicular applications focussing mainly on Ti – based metal hydrides. In order to accomplish this goal, the project had a dual focus which included the synthesis methodology of Ti – based AB and AB₂ materials and the development of new surface engineering solutions, based on electroless plating and chemical vapour deposition on the surface modification of Ti – based metal hydride forming materials using Pd-based catalytic layers. TiFe alloy was synthesised by sintering of the Ti and Fe powders and by arc-melting. Sintered samples revealed three phases: TiFe (major), Ti₄Fe₂O, and β-Ti. Hydrogen absorption showed that the sintered material was almost fully activated after the first vacuum heating (400 °C) when compared to the arc-melted sample requiring several activation cycles. The increase in the hydrogen absorption kinetics of the sintered sample was associated with the influence of the formed hydrogen transfer catalyst, viz. oxygen containing Ti₄Fe₂O₁₋ₓ and β-Ti, which was confirmed by the XRD data from the samples before and after hydrogenation. The introduction of oxygen impurity into TiFe alloy observed in the sintered sample significantly influenced on its PCT performances, due to formation of stable hydrides of the impurity phases, as well as destabilisation of both β-TiFeH and, especially, γ-TiFeH₂. This finally resulted in the decrease of the reversible hydrogen storage capacity of the oxygen-contaminated sample. TiFe alloy was also prepared via induction melting using graphite and alumo-silica crucibles. It was shown that the samples prepared via the graphite crucible produced TiFe alloy as the major phase, whereas the alumo-silica crucible produced Ti₄Fe₂O₁-x and TiFe₂ as the major phases, and TiFe alloy as the minor one. A new method for the production of TiFe – based materials by two-stage reduction of ilmenite (FeTiO₃) using H₂ and CaH₂ as reducing agents was developed. The reversible hydrogen absorption performance of the TiFe – based material prepared via reduction of ilmenite was 0.5 wt. % H, although hydrogen absorption capacity of TiFe reported in the literature should be about 1.8 wt. %. The main reason for this low hydrogen capacity is due to large amount of oxygen present in the as prepared TiFe alloy. Thus to improve the hydrogen absorption of the raw TiFe alloy, it was melted with Zr, Cr, Mn, Ni and Cu to yield an AB₂ alloy. For the as prepared AB₂ alloy, the reversible hydrogen sorption capacity was about 1.3 wt. % H at P=40 bar and >1.8 wt.% at P=150 bar, which is acceptable for stationary applications. Finally, the material was found to be superior as compared to known AB₂-type alloys, as regards to its poisoning tolerance: 10-minutes long exposure of the dehydrogenated material to air results in a slight decrease of the hydrogen absorption capacity, but almost does not reduce the rate of the hydrogenation. Hydrogen storage performance of the TiFe-based materials suffers from difficulties with hydrogenation and sensitivity towards impurities in hydrogen gas, reducing hydrogen uptake rates and decreasing the cycle stability. An efficient solution to this problem is in modification of the material surface by the deposition of metals (including Palladium) capable of catalysing the dissociative chemisorption of hydrogen molecules. In this work, the surface modification of TiFe alloy was performed using autocatalytic deposition using PdCl₂ as the Pd precursor and metal-organic chemical vapour deposition technique (MO CVD), by thermal decomposition of palladium (II) acetylacetonate (Pd[acac]₂) mixed with the powder of the parent alloy. After surface modification of TiFe – based metal hydride materials with Pd, the alloy activation performance improved resulting in the alloy absorbing hydrogen without any activation process. The material also showed to absorb hydrogen after exposure to air, which otherwise proved detrimental.
22

Hydrogen storage systems : Methodology and model development for hydrogen storage systems performance evaluation based on a transient thermodynamic approach

Margaritari, Kreshnik January 2023 (has links)
The overall performance of a hydrogen storage system can be affected by various parameters, such as operation and design parameters, but also by the state of the hydrogen contained inside the storage tanks. In this work, a methodology is developed to evaluate the state of the hydrogen during the filling process and its impact on the overall system performance under variable operation conditions and design parameters. To approach as close as possible hydrogen as real gas, the thermodynamic properties of it are obtained from experimental thermodynamic tables. Based on those thermodynamic tables, a discrete database for each thermodynamic property is constructed. To minimize the error and achieve acceptable execution time, a searching method based on curve fitting techniques is developed to derive the thermodynamic properties from the discretized data. The evaluation of the hydrogen state is done based on a developed method that derives the pressure and temperature based on calculated thermodynamic properties during the filling process. The interaction between the contained hydrogen and tank during the filling process is taken into account during the methodology development. Furthermore, energy requirements for the compression system of the hydrogen storage system, including the cooling demand, are also included in the methodology. Based on the developed methodology, a transient model that can evaluate the hydrogen state condition, storage tank wall temperature condition, and energy requirement of the storage system is developed. Validation against experimental and simulation results for an actual filling event of a hydrogen storage tank is done, showing good agreement in the results. The model was used to simulate the performance of a hydrogen storage system, inspired in terms of layout by a real-world HRS storage system. The results showed that the total amount of filled hydrogen and the filling duration of the charging process are greatly affected by the compression and heat transfer phenomena occurring inside the tank. The storage tanks with lower volumes and higher operation pressure tend to be more affected by compression and heat transfer phenomena. Operation parameters such as inlet mass flow and inlet temperature, can have an impact on the system, both in terms of energy consumption and filling performance. Furthermore, based on the investigation of compression stages, the results showed that the number of stages can affect the compression ratio of each stage, resulting in lower or higher efficiency, which directly affects the energy consumption of the compression system. A parametric investigation of the upper operation pressures of the hydrogen tanks showed that the total amount of stored hydrogen is affected when the respective upper pressures vary. Last, it was shown that there is an optimal upper pressure level for each bank that can result in lower specific compression energy, indicating that the model could be used for optimization purposes.
23

Computational Insights on Functional Materials for Clean Energy Storage : Modeling, Structure and Thermodynamics

Hussain, Tanveer January 2013 (has links)
The exponential increase in the demands of world’s energy and the devastating effects of current fossil fuels based sources has forced us to reduce our dependence on the current sources as well as finding cleaner, cheaper and renewable alternates. Being abundant, efficient and renewable, hydrogen can be opted as the best possible replacement of the diminishing and harmful fossil fuels. But the transformation towards the hydrogen-based economy is hindered by the unavailability of suitable storage medium for hydrogen. First principles calculations based on density functional theory has been employed in this thesis to investigate the structures modelling and thermodynamics of various efficient materials capable of storing hydrogen under chemisorption and physisorption mechanisms. Thanks to their high storage capacity, abundance and low cost, metal hydride (MgH2) has been considered as promising choice for hydrogen storage. However, the biggest drawback is their strong binding with the absorbed hydrogen under chemisorption, which make them inappropriate for operation at ambient conditions. Different strategies have been applied to improve the thermodynamics including doping with light and transitions metals in different phases of MgH2 in bulk form.  Application of mechanical strain along with Al, Si and Ti doping on MgH2 (001) and (100) surfaces has also been found very useful in lowering the dehydrogenation energies that ultimately improve adsorption/desorption temperatures. Secondly, in this thesis, two-dimensional materials with high surface area have been studied for the adsorption of hydrogen in molecular form (H2) under physisorption. The main disadvantage of this kind of storage is that the adsorption of H2 with these nanostructures likes graphane, silicene, silicane, BN-sheets, BC3 sheets are low and demand operation at cryogenic conditions. To enhance the H2 binding and attain high storage capacity the above-mentioned nanostructures have been functionalized with light metals (alkali, alkaline) and polylithiated species  (OLi2, CLi3, CLi4). The stabilities of the designed functional materials for H2 storage have been verified by means of molecular dynamics simulations.
24

Nouveaux intermétalliques ternaires à base de magnésium pour le stockage de l’hydrogène / New ternary intermetallics, based magnesium, for hydrogen storage

Roquefere, Jean-Gabriel 06 May 2009 (has links)
L’utilisation des combustibles fossiles (énergies non renouvelables) est responsable de l’augmentation de la concentration en gaz à effet de serre dans l’atmosphère. Parmi les solutions de remplacement envisagées, l’hydrogène apparaît comme le vecteur énergétique le plus séduisant. Son stockage dans des intermétalliques permet d’obtenir des capacités massiques et volumiques (e.g. 140 g/L) supérieures à celles obtenues en voie liquide ou sous pression (respectivement 71 et 40 g/L). Nous avons élaboré des composés à base de Mg et de terres rares (e.g. Y, Ce et Gd) dérivant des phases de Laves cubiques AB2. Leurs propriétés physico-chimiques ont été étudiées (hydruration, électrochimie, magnétisme, …). Les conditions de sorption (P et T) se sont révélées particulièrement favorables (i.e. absorption à température ambiante et pression atmosphérique). Par ailleurs, afin d’améliorer la cinétique de sorption du magnésium métallique, les composés précédemment élaborés ont été utilisés comme catalyseurs. Ainsi, GdMgNi4 a été co-broyé avec du magnésium et les vitesses d’absorption et de désorption du composite sont supérieures à celles obtenues pour les composites Mg+Ni ou Mg+V qui sont des références. Une approche théorique (DFT) a permis de modéliser la structure électronique des composés ternaires (i.e. TRMgNi4) et ainsi de prédire ou de confirmer les résultats expérimentaux. Enfin nous avons étudié de nouveaux intermétalliques riches en terre rare (TR4MgNi) dont les capacités d’absorption en hydrogène sont élevées (2H/M). / The use of fossil fuels (non-renewable energy) is responsible for increasing the concentration of greenhouse gases in the atmosphere. Among the considered alternatives, hydrogen is seen as the most attractive energy vector. The storage in intermetallics makes it possible to obtain mass and volume capacities (e.g. 140 g/L) higher than those obtained by liquid form or under pressure (respectively 71 and 40 g/L). We have synthesised Mg and Rare Earth based compounds (RE = Y, Ce and Gd), derived from the cubic Laves phases AB2. Their physical and chemical properties have been studied (hydrogenation, electrochemistry, magnetism, ...). The conditions of sorption (P and T) are particularly favorable (i.e. absorption at room temperature and atmospheric pressure). Besides, to improve the sorption kinetics of metallic magnesium, the compounds developed previously were used as catalysts. Thus, GdMgNi4 was milled with magnesium and the speeds of absorption and desorption of the mixture are found higher than those obtained for the composites Mg+Ni or Mg+V, which are reference systems. A theoretical approach (DFT) was used to model the electronic structure of the ternary compounds (i.e. REMgNi4) and thus to predict or confirm the experimental results. Finally we have studied new intermetallics rich in rare earth (RE4MgNi) whose hydrogen absorption capacities are high (2H/M).
25

BN Isosteres of Acenes for Potential Applications in Optoelectronic Devices

Ishibashi, Jacob Shotaro Afaga January 2017 (has links)
Thesis advisor: Shih-Yuan Liu / This dissertation describes progress in the field of polycyclic boron- nitrogen-containing systems, especially for potential application in organic-based optoelectronic devices and hydrogen storage materials. The replacement of a BN unit for a CC unit organic compounds (BN/CC isosterism) can have a profound effect on the electronic structure and even function of a given molecular topology without changing its physical structure very much. Direct comparison between a BN-containing molecule and its direct all-carbon analogue is crucial to establishing the origin of these differences. The synthesis and optoelectronic characterization of boron- nitrogen-containing analogues of naphthalene, anthracene, and tetracene are disclosed. Also examined herein is the aromatic Claisen rearrangement applied to an azaboryl allyl ether. Finally, the chemistry of saturated BN heterocycles, including an iridium-catalyzed transfer dehydrogenation method for synthesizing BN-fused azaborines. Also disclosed is the actual application of these cyclic amine-boranes in supplying hydrogen for a proton exchange membrane (PEM) fuel cell. / Thesis (PhD) — Boston College, 2017. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
26

Hydrogen absorption properties of scandium and aluminium based compounds

Sobkowiak, Adam January 2010 (has links)
<p>In a time of global environmental problems due to overuse of fossil fuels, and a subsequent depletion of the supplies, hydrogen is considered as one of the most important renewable future fuels for use in clean energy systems with zero greenhouse-gas emission. Hydrogen storage is the main issue that needs to be solved before the technology can be implemented into key areas such as transport. The high energy density, good stability and reversibility of metal hydrides make them appealing as hydrogen storage materials. In this thesis research on synthesis and hydrogen absorption properties for intermetallic compounds based on scandium and aluminium is reported. The compounds were synthesized by arc melting or induction melting and exposed to hydrogen in a high pressure furnace. Desorption investigations were performed by thermal desorption spectroscopy. The samples were analyzed by x-ray powder diffraction and electron microscopy. ScAlNi, crystallizing in the MgZn2-type structure (space group: P63/mmc; a = 5.1434(1) Å, c = 8.1820(2) Å), was found to absorb hydrogen by two different mechanisms at different temperature regions. At ~120 °C hydrogen was absorbed by solid solution formation with estimated compositions up to ScAlNiH0.5. At ~500 °C hydrogen was absorbed by disproportionation of ScAlNi into ScH2 and AlNi. The reaction was found to be fully reversible due to destabilization effects which lowered the decomposition temperature of ScH2 by ~460 °C.</p>
27

First Principles Modeling for Research and Design of New Materials

Ceder, Gerbrand 01 1900 (has links)
First principles computation can be used to investigate an design materials in ways that can not be achieved with experimental means. We show how computations can be used to rapidly capture the essential physics that determines the useful properties in different applications. Some applications for predicting crystal structure, thermodynamic and kinetic properties, and phase stability are discussed. This first principles tool set will be demonstrated with applications from rechargeable batteries and hydrogen storage materials. / Singapore-MIT Alliance (SMA)
28

Hydrogen absorption properties of scandium and aluminium based compounds

Sobkowiak, Adam January 2010 (has links)
In a time of global environmental problems due to overuse of fossil fuels, and a subsequent depletion of the supplies, hydrogen is considered as one of the most important renewable future fuels for use in clean energy systems with zero greenhouse-gas emission. Hydrogen storage is the main issue that needs to be solved before the technology can be implemented into key areas such as transport. The high energy density, good stability and reversibility of metal hydrides make them appealing as hydrogen storage materials. In this thesis research on synthesis and hydrogen absorption properties for intermetallic compounds based on scandium and aluminium is reported. The compounds were synthesized by arc melting or induction melting and exposed to hydrogen in a high pressure furnace. Desorption investigations were performed by thermal desorption spectroscopy. The samples were analyzed by x-ray powder diffraction and electron microscopy. ScAlNi, crystallizing in the MgZn2-type structure (space group: P63/mmc; a = 5.1434(1) Å, c = 8.1820(2) Å), was found to absorb hydrogen by two different mechanisms at different temperature regions. At ~120 °C hydrogen was absorbed by solid solution formation with estimated compositions up to ScAlNiH0.5. At ~500 °C hydrogen was absorbed by disproportionation of ScAlNi into ScH2 and AlNi. The reaction was found to be fully reversible due to destabilization effects which lowered the decomposition temperature of ScH2 by ~460 °C.
29

Ligand Design for Novel Metal-Organic Polyhedra and Metal-Organic Frameworks for Alternative Energy Applications

Kuppler, Ryan John 2010 August 1900 (has links)
The primary goal of this research concerns the synthesis of organic ligands in an effort to create metal-organic porous materials for the storage of gas molecules for alternative energy applications as well as other applications such as catalysis, molecular sensing, selective gas adsorption and separation. Initially, the focus of this work was on the synthesis of metal-organic polyhedra, yet the research has to date not progressed past the synthesis of ligands and the theoretical polyhedron that may form. Further efforts to obtain polyhedra from these ligands need to be explored. Concurrently, the search for a metal-organic framework that hopefully breaks the record for methane adsorption at low pressure and standard temperature was undertaken. A framework, PCN-80, was synthesized based off a newly synthesized extended bianthracene derivative, yet was unstable to the atmosphere. Hydrogen and methane adsorption capacities have been evaluated by molecular simulations; these adsorption isotherms indicated a gravimetric hydrogen uptake of 9.59 weight percent and a volumetric uptake of methane of 78.47 g/L. Following the synthesis of PCN-80, a comparison study involving the effect of the stepwise growth of the number of aromatic rings in the ligand of a MOF was pursued; the number of aromatic rings in the ligand was varied from one to eight while still maintaining a linear, ditopic moiety. The synthesis of another bianthracene-based ligand was used to complete the series of ligands and PCN-81, a two-dimensional framework with no noticeable porosity as evident by the simulated hydrogen uptake of 0.68 weight percent, was synthesized. All of these MOFs were synthesized from zinc salts to reduce the number of variables. No clear relationship was established in terms of the number of aromatic rings present in the ligand and the hydrogen adsorption capacity. However, it was confirmed that the density and hydrogen uptake in weight percent are inversely proportional. Further work needs to be done to determine what advantages are offered by these novel frameworks containing extended bianthracene derivatives. For example, with the highly fluorescent nature of the ligands from which they are composed, both PCN-80 and PCN-81 should be studied for the potential use in the application of fluorescent materials.
30

Bi-metallic Catalyst for Hydrogen Sorption of Magnesium Hydride

Zahiri-Sabzevar, Beniamin Unknown Date
No description available.

Page generated in 0.0284 seconds