• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 28
  • 11
  • 11
  • 10
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 245
  • 245
  • 57
  • 51
  • 41
  • 41
  • 35
  • 34
  • 34
  • 31
  • 30
  • 30
  • 29
  • 25
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Hydrogen Storage Materials : Design, Catalysis, Thermodynamics, Structure and Optics

Graça Araújo, Carlos Moysés January 2008 (has links)
Hydrogen is abundant, uniformly distributed throughout the Earth's surface and its oxidation product (water) is environmentally benign. Owing to these features, it is considered as an ideal synthetic fuel for a new world energetic matrix (renewable, secure and environmentally friendly) that could allow a sustainable future development. However, for this prospect to become a reality, efficient ways to produce, transport and store hydrogen still need to be developed. In the present thesis, theoretical studies of a number of potential hydrogen storage materials have been performed using density functional theory. In NaAlH4 doped with 3d transition metals (TM), the hypothesis of the formation of Ti-Al intermetallic alloy as the main catalytic mechanism for the hydrogen sorption reaction is supported. The gateway hypothesis for the catalysis mechanism in TM-doped MgH2 is confirmed through the investigation of MgH2 nano-clusters. Thermodynamics of Li-Mg-N-H systems are analyzed with good agreement between theory and experiments. Besides chemical hydrides, the metal-organic frameworks (MOFs) have also been investigated. Li-decorated MOF-5 is demonstrated to possess enhanced hydrogen gas uptake properties with a theoretically predicted storage capacity of 2 wt% at 300 K and low pressure. The metal-hydrogen systems undergo many structural and electronic phase transitions induced by changes in pressure and/or temperature and/or H-concentration. It is important both from a fundamental and applied viewpoint to understand the underlying physics of these phenomena. Here, the pressure-induced structural phase transformations of NaBH4 and ErH3 were investigated. In the latter, an electronic transition is shown to accompany the structural modification. The electronic and optical properties of the low and high-pressure phases of crystalline MgH2 were calculated. The temperature-induced order-disorder transition in Li2NH is demonstrated to be triggered by Li sub-lattice melting. This result may contribute to a better understanding of the important solid-solid hydrogen storage reactions that involve this compound.
62

Production And Characterization Of Cani Compounds For Metal Hydride Batteries

Oksuz, Berke 01 September 2012 (has links) (PDF)
Ni - MH batteries have superior properties which are long cycle life, low maintenance, high power, light weight, good thermal performance and configurable design. Hydrogen storage alloys play a dominant role in power service life of a Ni - MH battery and determining the electrochemical properties of the battery. LaNi5, belonging to the CaCu5 crystal structure type, satisfy many of the properties. The most important property of LaNi5 is fast hydrogen kinetics. Recently, CaNi5, belonging to same crystal type, has taken some attention due to its low cost, higher hydrogen storage capacity, good kinetic properties. However, the main restriction of its use is its very low cycle life. The aim of the study is to obtain a more stable structure providing higher cycle life by the addition of different alloying elements. In this study, the effect of sixteen alloying elements (Mn, Sm, Sn, Al, Y, Cu, Si, Zn, Cr, Mg, Fe, Dy, V, Ti, Hf and Er) on cycle life was investigated. Sm, Y, Dy, Ti, Hf and Er were added for replacement of Ca and Mn, Sn, Al, Cu, Si, Zn, Cr, Mg, Fe and V were added for replacement of Ni. Alloys were produced by vacuum casting and heat treating followed by ball milling. The cells assembled, using the produced active materials as anode, which were cycled for charging and discharging. As a result, replacement of Ca with Hf, Ti, Dy and Er, and replacement of Ni with Si and Mn were observed to show better cycle durability rather than pure CaNi5.
63

Computational Studies of Nanotube Growth, Nanoclusters and Cathode Materials for Batteries

Larsson, Peter January 2009 (has links)
Density functional theory has been used to investigate cathode materials for rechargeable batteries, carbon nanotube interactions with catalyst particles and transition metal catalyzed hydrogen release in magnesium hydride nanoclusters. An effort has been made to the understand structural and electrochemical properties of lithium iron silicate (Li2FeSiO4) and its manganese-doped analogue. Starting from the X-ray measurements, the crystal structure of Li2FeSiO4 was refined, and several metastable phases of partially delithiated Li2FeSiO4 were identified. There are signs that manganese doping leads to structural instability and that lithium extraction beyond 50% capacity only occurs at impractically high potentials in the new material. The chemical interaction energies of single-walled carbon nanotubes and nanoclusters were calculated. It is found that the interaction needs to be strong enough to compete with the energy gained by detaching the nanotubes and forming closed ends with carbon caps. This represents a new criterion for determining catalyst metal suitability. The stability of isolated carbon nanotube fragments were also studied, and it is argued that chirality selection during growth is best achieved by exploiting the much wider energy span of open-ended carbon nanotube fragments. Magnesium hydride nanoclusters were doped with transition metals Ti, V, Fe, and Ni. The resulting changes in hydrogen desorption energies from the surface were calculated, and the associated changes in the cluster structures reveal that the transition metals not only lower the desorption energy of hydrogen, but also seem to work as proposed in the gateway hypothesis of transition metal catalysis.
64

Functional Materials for Rechargeable Li Battery and Hydrogen Storage

He, Guang January 2012 (has links)
The exploration of functional materials to store renewable, clean, and efficient energies for electric vehicles (EVs) has become one of the most popular topics in both material chemistry and electrochemistry. Rechargeable lithium batteries and fuel cells are considered as the most promising candidates, but they are both facing some challenges before the practical applications. For example, the low discharge capacity and energy density of the current lithium ion battery cannot provide EVs expected drive range to compete with internal combustion engined vehicles. As for fuel cells, the rapid and safe storage of H2 gas is one of the main obstacles hindering its application. In this thesis, novel mesoporous/nano functional materials that served as cathodes for lithium sulfur battery and lithium ion battery were studied. Ternary lithium transition metal nitrides were also synthesized and examined as potential on-board hydrogen storage materials for EVs. Highly ordered mesoporous carbon (BMC-1) was prepared via the evaporation-induced self-assembly strategy, using soluble phenolic resin and Tetraethoxysilane (TEOS) as precursors and triblock copolymer (ethylene oxide)106(propylene oxide)70(ethylene oxide)106 (F127) as the template. This carbon features a unique bimodal structure (2.0 nm and 5.6 nm), coupled with high specific area (2300 m2/g) and large pore volume (2.0 cm3/g). The BMC-1/S nanocomposites derived from this carbon with different sulfur content exhibit high reversible discharge capacities. For example, the initial capacity of the cathode with 50 wt% of sulfur was 995 mAh/g and remains at 550 mAh/g after 100 cycles at a high current density of 1670 mA/g (1C). The good performance of the BMC-1C/S cathodes is attributed to the bimodal structure of the carbon, and the large number of small mesopores that interconnect the isolated cylindrical pores (large pores). This unique structure facilitates the transfer of polysulfide anions and lithium ions through the large pores. Therefore, high capacity was obtained even at very high current rates. Small mesopores created during the preparation served as containers and confined polysulfide species at the cathode. The cycling stability was further improved by incorporating a small amount of porous silica additive in the cathodes. The main disadvantage of the BMC-1 framework is that it is difficult to incorporate more than 60 wt% sulfur in the BMC-1/S cathodes due to the micron-sized particles of the carbon. Two approaches were employed to solve this problem. First, the pore volume of the BMC-1 was enlarged by using pore expanders. Second, the particle size of BMC-1 was reduced by using a hard template of silica. Both of these two methods had significant influence on improving the performance of the carbon/sulfur cathodes, especially the latter. The obtained spherical BMC-1 nanoparticles (S-BMC) with uniform particle size of 300 nm exhibited one of the highest inner pore volumes for mesoporous carbon nanoparticles of 2.32 cm3/g and also one of the highest surface areas of 2445 m2/g with a bimodal pore size distribution of large and small mesopores of 6 nm and 3.1 nm. As much as 70 wt% sulfur was incorporated into the S-BMC/S nanocomposites. The corresponding electrodes showed a high initial discharge capacity up to 1200 mAh/g and 730 mAh/g after 100 cycles at a high current rate 1C (1675 mA/g). The stability of the cells could be further improved by either removal of the sulfur on the external surface of spherical particles or functionalization of the C/S composites via a simple TEOS induced SiOx coating process. In addition, the F-BMC/S cathodes prepared with mesoporous carbon nanofibers displayed similar performance as the S-BMC/S. These results indicate the importance of particle size control of mesoporous carbons on electrochemical properties of the Li-S cells. By employing the order mesoporous C/SiO2 framework, Li2CoSiO4/C nanocomposites were synthesized via a facile hydrothermal method. The morphology and particle size of the composites could be tailored by simply adjusting the concentrations of the base LiOH. By increasing the ratio of LiOH:SiO2:CoCl2 in the precursors, the particle size decreased at first and then went up. When the molar ratio is equal to 8:1:1, uniform spheres with a mean diameter of 300-400 nm were obtained, among which hollow and core shell structures were observed. The primary reaction mechanism was discussed, where the higher concentration of OH- favored the formation of Li2SiO3 but hindered the subsequent conversion to Li2CoSiO4. According to the elemental maps and TGA of the Li2CoSiO4/C, approximately 2 wt% of nanoscale carbon was distributed on/in the Li2CoSiO4, due to the collapse of the highly ordered porous structure of MCS. These carbons played a significant role in improving the electrochemical performance of the electrode. Without any ball-mill or carbon wiring treatments, the Li2CoSiO4/C-8 exhibited an initial discharge capacity of 162 mAh/g, much higher than that of the sample synthesized with fume silica under similar conditions and a subsequent hand-mixing of Ketjen black. Finally, lithium transition metal nitrides Li7VN4 and Li7MnN4 were prepared by high temperature solid-state reactions. These two compounds were attempted as candidates for hydrogen storage both by density functional theory (DFT) calculations and experiments. The results show that Li7VN4 did not absorb hydrogen under our experimental conditions, and Li7MnN4 was observed to absorb 7 hydrogen atoms through the formation of LiH, Mn4N, and ammonia gas. While these results for Li7VN4 and Li7MnN4 differ in detail, they are in overall qualitative agreement with our theoretical work, which strongly suggests that both compounds are unlikely to form quaternary hydrides.
65

Dehydriding process of alpha-AlH3 observed by transmission electron microscopy and electron energy-loss spectroscopy

Muto, S, Tatsumi, K, Ikeda, K, Orimo, S 19 June 2009 (has links)
No description available.
66

Atomistic Modelling of Materials for Clean Energy Applications : hydrogen generation, hydrogen storage, and Li-ion battery

Qian, Zhao January 2013 (has links)
In this thesis, a number of clean-energy materials for hydrogen generation, hydrogen storage, and Li-ion battery energy storage applications have been investigated through state-of-the-art density functional theory. As an alternative fuel, hydrogen has been regarded as one of the promising clean energies with the advantage of abundance (generated through water splitting) and pollution-free emission if used in fuel cell systems. However, some key problems such as finding efficient ways to produce and store hydrogen have been hindering the realization of the hydrogen economy. Here from the scientific perspective, various materials including the nanostructures and the bulk hydrides have been examined in terms of their crystal and electronic structures, energetics, and different properties for hydrogen generation or hydrogen storage applications. In the study of chemisorbed graphene-based nanostructures, the N, O-N and N-N decorated ones are designed to work as promising electron mediators in Z-scheme photocatalytic hydrogen production. Graphene nanofibres (especially the helical type) are found to be good catalysts for hydrogen desorption from NaAlH4. The milestone nanomaterial, C60, is found to be able to significantly improve the hydrogen release from the (LiH+NH3) mixture. In addition, the energetics analysis of hydrazine borane and its derivative solid have revealed the underlying reasons for their excellent hydrogen storage properties.  As the other technical trend of replacing fossil fuels in electrical vehicles, the Li-ion battery technology for energy storage depends greatly on the development of electrode materials. In this thesis, the pure NiTiH and its various metal-doped hydrides have been studied as Li-ion battery anode materials. The Li-doped NiTiH is found to be the best candidate and the Fe, Mn, or Cr-doped material follows. / <p>QC 20130925</p>
67

Structure and Morphology Control in Carbon Nanomaterials for Nanoelectronics and Hydrogen Storage

McNicholas, Thomas Patrick January 2009 (has links)
<p>Carbon nanomaterials have a wide range of promising and exciting applications. One of the most heavily investigated carbon nanomaterial in recent history has been the carbon nanotube. The intense interest in carbon nanotubes can be attributed to the many exceptional characteristics which give them great potential to revolutionize modern mechanical, optical and electronic technologies. However, controlling these characteristics in a scalable fashion has been extremely difficult. Although some progress has been made in controlling the quality, diameter distribution and other characteristics of carbon nanotube samples, several issues still remain. The two major challenges which have stood in the way of their mainstream application are controlling their orientation and their electronic characteristics. Developing and understanding a Chemical Vapor Deposition based carbon nanotube synthesis method has been the major focus of the research presented here. Although several methods were investigated, including the so-called "fast-heating, slow-cooling" and large feeding gas flowrate methods, it was ultimately found that high-quality, perfectly aligned carbon nanotubes from a variety of metal catalysts could be grown on quartz substrates. Furthermore, it was found that using MeOH could selectively etch small-diameter metallic carbon nanotubes, which ultimately led to the productions of perfectly aligned single-walled carbon nanotube samples consisting almost entirely of semiconducting carbon nanotubes. Thiophene was utilized to investigate and support the hypothesized role of MeOH in producing these selectively gown semiconducting carbon nanotube samples. Additionally, this sulfur-containing compound was used for the first time to demonstrate a two-fold density enhancement in surface grown carbon nanotube samples. This method for selectively producing perfectly aligned semiconducting carbon nanotubes represents a major step towards the integration of carbon nanotubes into mainstream applications.</p><p>Although extremely useful in a variety of technologies, carbon nanotubes have proven impractical for use in H<sub>2</sub> storage applications. As such, microporous carbons have been heavily investigated for such ends. Microporous carbons have distinguished themselves as excellent candidates for H<sub>2</sub> storage media. They are lightweight and have a net-capacity of almost 100%, meaning that nearly all of the H<sub>2</sub> stored in these materials is easily recoverable for use in devices. However, developing a microporous carbon with the appropriately small pore diameters (~1nm), large pore volumes (>1cm<super>3</super>) and large surface areas (&#8805;3000m<super>2</super>/g) has proven exceedingly difficult. Furthermore, maintaining the ideal graphitic pore structure has also been an unresolved issue in many production means. Several microporous carbon synthesis methods were investigated herein, including inorganic and organically templated production schemes. Ultimately, thermally treating poly (etherether ketone) in CO<sub>2</sub> and steam environments was found to produce large surface area porous carbons (&#8805;3000m<super>2</super>/g) with the appropriately small pore diameters (<3nm) and large pore volumes (>1cm<super>3</super>) necessary for optimized storage of H2. Furthermore, the surface chemistry of these pores was found to be graphitic. As a result of these ideal conditions, these porous carbons were found to store ~5.8wt.% H<sub>2</sub> at 77K and 40bar. This represents one of the most promising materials presently under investigation by the United States Department of Energy H<sub>2</sub> Sorption Center of Excellence. </p><p>The success of both of these materials demonstrates the diversity and promise of carbon nanomaterials. It is hoped that these materials will be further developed and will continue to revolutionize a variety of vital technologies.</p> / Dissertation
68

Hydrogen storage and delivery mechanism of metal nanoclusters on a nanosheet

Huang, Li-Fan 19 January 2012 (has links)
In this study, we used the Density functional theory (DFT) and Molecular dynamics (MD) to obtain the suitable hydrogen storage structure of Rh nanoclusters on the boron nitride sheet and Li atoms on the graphene. The reason of studying two type of nanoparticles is that there are two adsorption method in hydrogen storage, such as the adsorption of hydrogen molecules and hydrogen atoms. Using Rh nanoclusters on the boron nitride sheet to store hydrogen belong to the adsorption of hydrogen atoms. Using Li atoms on the graphene to store hydrogen belong to the adsorption of hydrogen molecules. We use these two models to simulate the hydrogen storage in this study. There were four parts in this study: The first part: The Density functional theory is utilized to obtain the configuration and corresponding energy of Rh nanoclusters, boron nitride sheet, Rh nanoclusters adsorbed on the boron nitride sheet, Li atoms adsorbed on the graphene, hydrogen adsorbed on the graphene and hydrogen adsorbed on the Li atoms. Then, we use the Force-matching method (FMM) to modify the parameters of potential function by the reference data which are obtained by Density functional theory. Finally, we use the modified parameters of potential function to perform Molecular dynamics in this study. The second part: In this part, the dynamical behavior of Rh nanoclusters with different sizes on the boron nitride sheet are investigated in temperature-rise period. The migration trajectory, square displacement and mean square displacement of the mass center of the Rh nanoclusters are used to analyze the dynamics behavior of Rh nanoclusters on the boron nitride sheet. The third part: In this part, the pristine graphene and graphen with Li atoms are investigated the efficiency of hydrogen storage at different temperature and pressure. In order to obtain the temperature (77K and 300K) and pressure effect of hydrogen storage, the densimetric distribution and gravimetric capacity (wt%) are analyzed. The fourth part: The Molecular dynamics is utilized to study the hydrogen storage and delivery when the distance between two graphene is different. Then, the temperature effect (77K and 300K) of hydrogen storage, the gravimetric capacity (wt%) are analyzed. In addition, the gravimetric capacity (wt%) of hydrogen delivery are also analyzed in the larger system space at 300K.
69

First Principles Investigation Of Hydrogen Storage In Intermetallic Systems

Kinaci, Alper 01 July 2007 (has links) (PDF)
The design and production of efficient metal-hydrides for hydrogen storage is a long standing subject. Over the years, many different types of intermetallic hydride systems were studied and some of them came out to be operable. However, none of them meet all the storage criteria perfectly. In this study, total energies, hydrogen storage capacity and stability of AB (A = Al, Be, Cu, Fe, Ni, Sb, V and B = Ti) type intermetallics were investigated with the goal of spotting a potential hydrogen storage material. The relation between thermodynamic properties and the atomic and the electronic structure of hydrides are also pointed out. For this task, first principles pseudopotential method within the generalized gradient approximation (GGA) to density functional theory (DFT) was used. Calculations correctly predict experimentally determined structures except for CuTiH. Moreover, the atomic and cell parameter were found within the allowable error interval for DFT. In CuTi intermetallic, a structure having considerably lower formation energy than experimentally found mono-hydride was determined. This contradiction may be due to metastability of the experimental phase and high activation energy for the hydrogen movement in the system. It was found that AlTi and SbTi are not suitable candidates for hydrogen storage since their hydrides are too unstable. For the other intermetallic systems, the stability of the hydrides decreases in the order of VTi, CuTi, NiTi, BeTi, FeTi. For VTi, FeTi and NiTi, a change in metallic coordination around hydrogen from octahedron to tetrahedron is predicted when tetra-hydride (MTiH4) is formed. Additionally, at this composition, FeTi and NiTi have hydride structures with positive but near-zero formation energy which may be produced with appropriate alteration in chemical makeup or storage parameters. VTi is a promising intermetallic by means of storage capacity in that even VTiH6 is found to have negative formation energy but the hydrides are too stable which can be a problem during hydrogen desorption.
70

Hydrogen Storage Capacity Of Nanosystems: Molecular

Onay, Aytun 01 May 2008 (has links) (PDF)
In recent decades, tremendous efforts have been made to obtain high hydrogen storage capacity in a stable configuration. In the literature there are plenty of experimental works investigating different materials for hydrogen storage and their storage values. In the first part of this thesis the available literature data have been collected and tabulated. In addition to the literature survey the hydrogen storage capacity of carbon nanotubes and carbon nanotubes doped with boron nitride (CBN nanotubes) with different chirality have been investigated by performing quantum chemical methods at semiempirical and DFT levels of calculations. It has been found that boron nitrite doping increases the hydrogen storage capacity of carbon nanotubes. Single wall carbon nanotubes (SWNT) can be thought as formed by warping a single graphitic layer into a cylindrical object. SWNTs attract much attention because they have unique electronic properties, very strong structure and high elastic moduli. The systems under study include the structures C(4,4), H2@C(4,4), C(7,0), C(4,0), and the BN doped C(4,4), H2@C(4,4), 2H2@C(4,4), C(7,0), H2@C(7,0), 2H2@C(7,0). Also, we have investigated adsorption and desorption of hydrogen molecules on BN doped coronene models by means of theoretical calculations.

Page generated in 0.0369 seconds