Spelling suggestions: "subject:"[een] HYDROGEN STORAGE"" "subject:"[enn] HYDROGEN STORAGE""
71 |
Ab Initio Design Of Novel Magnesium Alloys For Hydrogen StorageKecik, Deniz 01 July 2008 (has links) (PDF)
A candidate hydrogen storing material should have high storage capacity and fast dehydrogenation kinetics. On this basis, magnesium hydride (MgH2) is an outstanding compound with 7.66 wt % storage capacity, despite its slow dehydriding kinetics and high desorption temperature. Therefore in this study, bulk and surface alloys of Mg with improved hydrogen desorption characteristics were investigated. In this respect, formation energies of alloyed bulk MgH2 as well as the adsorption energies on alloyed magnesium (Mg) and MgH2 surface structures were calculated by total energy pseudopotential methods. Furthermore, the effect of substitutionally placed dopants on the dissociation of hydrogen molecule (H2) at the surface of Mg was studied via Molecular Dynamics (MD). The results displayed that 31 out of 32 selected dopants contributed to the decrease in formation energy of MgH2 within a range of ~ 37 kJ/mol-H2 where only Sr did not exhibit any such effect. The most favorable elements in this respect came out to be / P, K, Tl, Si, Sn, Ag, Pb, Au, Na,
v
Mo, Ge and In. Afterwards, a systematical study within adsorption characteristics of hydrogen on alloyed Mg surfaces (via dynamic calculations) as well as calculations regarding adsorption energies of the impurity elements were performed. Accordingly, Mo and Ni yielded lower adsorption energies / -9.2626 and -5.2995 eV for substitutionally alloyed surfaces, respectively. MD simulations presented that Co is found to have a splitting effect on H2 in 50 fs, where the first hydrogen atom is immediately adsorbed on Mg substrate. Finally, charge density distributions were realized to verify the distinguished effects of most 3d and 4d transition metals in terms of their catalyzer effects.
|
72 |
An Ab Initio Surface Study Of Feti For Hydrogen Storage ApplicationsIzanlou, Afshin 01 September 2009 (has links) (PDF)
In this study, the effect of surface crystallography on hydrogen molecule adsorption properties on FeTi surfaces is presented. Furthermore, the substitutional adsorption of 3d-transition metals on (001), (110) and (111) surfaces of FeTi is studied. Using ab initio pseudopotential methods, the adsorption energies of hydrogen and 3d-transition metals are calculated. In substitutional adsorption of 3d-transition metals, Fe-terminated (111) and Ti-terminated (001) surfaces, are found to express the lowest adsorption energies. The adsorption energy versus adsorbed elements&rsquo / curves are very alike for all the surfaces. According to this, going from the left to right of periodic table, the adsorption energies increase first. The maximum energy belongs to Cr, Mn and Fe for all the surfaces. Then a minimum is observed in Co for all the surfaces and after that the energy increases again. Adsorption energies of atomic and molecular hydrogen are calculated on high symmetry sites of surfaces. As a result, top and bridge sites came out to be the most stable positions for molecular and atomic hydrogen adsorption, respectively, for (001) and (111) surfaces in all terminations. In (110) surface / however, 3-fold (Ti-Ti)L-Fe and 3-fold (Ti-Ti)S-Fe hollow sites express the lowest adsorption energies for molecular and atomic hydrogen, respectively. Considering the minimum adsorption energy sites for hydrogen molecule and atom, a path of dissociation of hydrogen molecule on surfaces is represented. After that by fully relaxing the hydrogen molecule on the surface and using CI-NEB method the activation energy for hydrogen dissociation is calculated. So it has been found that on Fe-terminated (111) and FeTi (110) surfaces the dissociation of hydrogen molecule happens without activation energy. Meanwhile, the activation energy for Fe-terminated (001) surface and Ti-terminated (001) surface, is calculated to be 0.178 and 0.190 eV, respectively.
|
73 |
Direct Synthesis Of Hydrogen Storage Alloys From Their OxidesTan, Serdar 01 February 2011 (has links) (PDF)
The aim of this study is the synthesis of hydrogen storage compounds by electrodeoxidation technique which offers an inexpensive and rapid route to synthesize compounds from oxide mixtures. Within the scope of this study, two hydrogen storage compounds, FeTi and Mg2Ni, are aimed to be produced by this technique.
In the first part, effect of sintering conditions on synthesis of FeTi was studied. For this purpose, oxide pellets made out of Fe2O3-TiO2 powders were sintered at temperatures between 900 ° / C &ndash / 1300 ° / C. Experiments showed that by sintering at 1100 ° / C, Fe2TiO5 forms and particle size remains comparatively small, which improve the reducibility of the oxide pellet.
Experimental studies showed that the reduction of MgO rich MgO-NiO oxide pellet to synthesize Mg2Ni occurs only at extreme deoxidation conditions. Pure MgO remains intact after deoxidation. In contrast to these, pure NiO and NiO rich MgO-NiO mixtures were deoxidized successfully to Ni and MgNi2, respectively. Conductivity measurements address the low conductivity of MgO-rich systems as one of the reasons behind those difficulties in reduction.
In the last part, a study was carried out to elucidate the low reducibility of oxides. It is considered that the oxygen permeability becomes important when the reduction-induced volumetric change does not yield fragmentation into solid-state. The approach successfully explains why MgO particles could not be reduced at ordinary deoxidation conditions. The study addresses that Mg layer formed at the surface of MgO particles blocks the oxygen transport between MgO and electrolyte as Mg has low oxygen permeability.
|
74 |
Thickness Effects In Hydrogen Sorption Of Magnesium/palladium Thin FilmsGharemeshg Gharavi, Ayshe 01 February 2012 (has links) (PDF)
Magnesium (Mg) thin films with various thicknesses ranging from 50 to 1000 nm capped with nominally 20 nm Palladium (Pd) were prepared by a thermal evaporation unit. A total of 25 glass substrates were used in each experiment. The unit had a rotatable macro shutter, rectangular in shape, rotation axes opposite to the Mg source, which allowed controlled exposure of the substrates. Thin films of 50, 100, 150, 200, 300, 400, 500, 600, 800 nm and 1000 nm were produced in a single experiment. Hydrogenation and dehydrogenation of the films were examined using a gas loading chamber which allowed in-situ resistance measurement. Samples were hydrogenated isochronally up to 453 K with a heating rate of 1.5 K/min. Samples cooled to room temperature were subjected to dehydrogenation test. The chamber was taken under vacuum (~10-2 mbar) and the sample was heated up to 453 K at a rate of 1.5 K/min. The results showed that the hydrogenation and dehydrogenation temperatures correlate with the film thickness, thinner films reacting with hydrogen at low temperatures. While 200 nm thin film hydrogenated at 420 K and desorbed it at 423 K, 50 nm thin film hydrogenated at room temperature and desorbed it at 405 K. Thicker films needed higher temperatures to react with hydrogen. It is concluded that films thinner than 200 nm react fully with hydrogen / while a considerable portion of the thicker films remain unreacted. Significance of this is discussed with reference to the design of hydrogen storage systems based on thin films or nanoparticles.
|
75 |
Hydrogen Storage In Nanostructured MaterialsAssfour, Bassem 25 March 2011 (has links) (PDF)
Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions.
Such efforts need guidance from material science, which includes predictive theoretical tools.
Carbon nanotubes were considered as promising candidates for hydrogen storage applications, but later on it was found to be unable to store enough amounts of hydrogen under ambient conditions. New arrangements of carbon nanotubes were constructed and hydrogen sorption properties were investigated using state-of-the-art simulation methods. The simulations indicate outstanding total hydrogen uptake (up to 19.0 wt.% at 77 K and 5.52wt.% at 300 K), which makes these materials excellent candidates for storage applications. This reopens the carbon route to superior materials for a hydrogen-based economy.
Zeolite imidazolate frameworks are subclass of MOFs with an exceptional chemical and thermal stability. The hydrogen adsorption in ZIFs was investigated as a function of network geometry and organic linker exchange. Ab initio calculations performed at the MP2 level to obtain correct interaction energies between hydrogen molecules and the ZIF framework. Subsequently, GCMC simulations are carried out to obtain the hydrogen uptake of ZIFs at different thermodynamic conditions. The best of these materials (ZIF-8) is found to be able to store up to 5 wt.% at 77 K and high pressure.
We expected possible improvement of hydrogen capacity of ZIFs by substituting the metal atom (Zn 2+) in the structure by lighter elements such as B or Li. Therefore, we investigated the energy landscape of LiB(IM)4 polymorphs in detail and analyzed their hydrogen storage capacities. The structure with the fau topology was shown to be one of the best materials for hydrogen storage. Its total hydrogen uptake at 77 K and 100 bar amounts to 7.8 wt.% comparable to the total uptake reported of MOF-177 (10 wt.%), which is a benchmark material for high pressure and low temperature H2 adsorption.
Covalent organic frameworks are new class of nanoporous materials constructed solely from light elements (C, H, B, and O). The number of adsorption sites as well as the strength of adsorption are essential prerequisites for hydrogen storage in porous materials because they determine the storage capacity and the operational conditions. Currently, to the best of our knowledge, no experimental data are available on the position of preferential H2 adsorption sites in COFs. Molecular dynamics simulations were applied to determine the position of preferential hydrogen sites in COFs. Our results demonstrate that H2 molecule adsorbed at low temperature in seven different adsorption sites in COFs. The calculated adsorption energies are about 3 kJ/mol, comparable to that found for MOF systems. The gravimetric uptake for COF-108 reached 4.17 wt.% at room temperature and 100 bar, which makes this class of materials promising for hydrogen storage applications.
|
76 |
Computer Simulation of Metal-Organic MaterialsStern, Abraham C. 14 July 2010 (has links)
Computer simulations of metal-organic frameworks are conducted to both
investigate the mechanism of hydrogen sorption and to elucidate a detailed,
molecular-level understanding of the physical interactions that can lead to successful
material design strategies. To this end, important intermolecular interactions are
identified and individually parameterized to yield a highly accurate representation
of the potential energy landscape. Polarization, one such interaction found to play a
significant role in H 2 sorption, is included explicitly for the first time in simulations
of metal-organic frameworks. Permanent electrostatics are usually accounted for by
means of an approximate fit to model compounds. The application of this method
to simulations involving metal-organic frameworks introduces several substantial
problems that are characterized in this work. To circumvent this, a method is
developed and tested in which atomic point partial charges are computed more
directly, fit to the fully periodic electrostatic potential. In this manner, long-range
electrostatics are explicitly accounted for via Ewald summation. Grand canonical
Monte Carlo simulations are conducted employing the force field parameterization
developed here. Several of the major findings of this work are: Polarization is found
to play a critical role in determining the overall structure of H 2 sorbed in
metal-organic frameworks, although not always the determining factor in uptake.
The parameterization of atomic point charges by means of a fit to the periodic
electrostatic potential is a robust, efficient method and consistently results in a
reliable description of Coulombic interactions without introducing ambiguity
associated with other procedures. After careful development of both hydrogen and
framework potential energy functions, quantitatively accurate results have been
obtained. Such predictive accuracy will aid greatly in the rational, iterative design
cycle between experimental and theoretical groups that are attempting to design
metal-organic frameworks for a variety of purposes, including H 2 sorption and CO2
sequestration.
|
77 |
Theoretical Investigations of Gas Sorption and Separation in Metal-Organic MaterialsPham, Tony 01 January 2015 (has links)
Metal--organic frameworks (MOFs) are porous crystalline materials that are synthesized from rigid organic ligands and metal-containing clusters. They are highly tunable as a number of different structures can be made by simply changing the organic ligand and/or metal ion. MOFs are a promising class of materials for many energy-related applications, including H2 storage and CO2 capture and sequestration. Computational studies can provide insights into MOFs and the mechanism of gas sorption and separation. Theoretical studies on existing MOFs are performed to determine what structural characteristics leads to favorable gas sorption mechanisms. The results from these studies can provide insights into designing new MOFs that are tailored for specific applications. In this work, grand canonical Monte Carlo (GCMC) simulations were performed in various MOFs to understand the gas sorption mechanisms and identify the favorable sorption sites in the respective materials. Experimental observables such as sorption isotherms and associated isosteric heat of adsorption, Qst, values can be generated using this method. Outstanding agreement with experimental measurements engenders confidence in a variety of molecular level predictions. Explicit many-body polarization effects were shown to be important for the modeling of gas sorption in highly charged/polar MOFs that contain open-metal sites. Indeed, this was demonstrated through a series of simulation studies in various MOFs with rht topology that contain such sites. Specifically, the inclusion of many-body polarization interactions was essential to reproduce the experimentally observed sorption isotherms and Qst values and capture the binding of sorbate molecules onto the open-metal sites in these MOFs. This work also presents computational studies on a family of pillared square grid that are water-stable and display high CO2 sorption and selectivity. These MOFs are deemed promising for industrial applications and CO2 separations. Simulations in these materials revealed favorable interactions between the CO2 molecules and the SiF62- pillars. Further, the compound with the smallest pore size exhibits the highest selectivity for CO2 as demonstrated through both experimental and theoretical studies. Many other MOFs with intriguing sorption properties are investigated in this work and their sorption mechanisms have been discerned through molecular simulation.
|
78 |
Design of an underground compressed hydrogen gas storagePowell, Tobin Micah 14 February 2011 (has links)
Hydrogen has received significant attention throughout the past decade as the United States focuses on diversifying its energy portfolio to include sources of energy beyond fossil fuels. In a hydrogen economy, the most common use for hydrogen is in fuel cell vehicles. Advancements in on-board storage devices, investment in hydrogen production facilities nation-wide, development of a hydrogen transmission infrastructure, and construction of hydrogen fueling stations are essential to a hydrogen economy. This research proposes a novel underground storage technique to be implemented at a hydrogen fueling station. Three boreholes are drilled into the subsurface, with each borehole consisting of an outer pipe and an inner pipe. Hydrogen gas (H2) is stored in the inner tube, while the outer pipe serves to protect the inner pipe and contain any leaked gas. Three boreholes of varying pressures are necessary to maintain adequate inventory and sufficient pressure while filling vehicles to full tank capacity. The estimated cost for this storage system is $2.58 million. This dollar amount includes drilling and completion costs, steel pipe costs, the cost of a heavy-duty hydrogen compressor, and miscellaneous equipment expenses. Although the proposed design makes use of decades’ worth of experience and technical expertise from the oil and gas industry, there are several challenges—technical, economic, and social—to implementing this storage system. The impact of hydrogen embrittlement and the lack of a hydrogen transmission infrastructure represent the main technical impediments. Borehole H2 storage, as part of a larger hydrogen economy, reveals significant expenses beyond those calculated in the amount above. Costs related to delivering H2 to the filling station, electricity, miscellaneous equipment, and maintenance associated with hydrogen systems must also be considered. Public demand for hydrogen is low for several reasons, and significant misperceptions exist concerning the safety of hydrogen storage. Although the overall life-cycle emissions assessment of hydrogen fuel reveals mediocre results, a hydrogen economy impacts air quality less than current fossil-fuel systems. If and when the U.S. transitions to a hydrogen economy, the borehole storage system described herein is a feasible solution for on-site compressed H2 storage. / text
|
79 |
MIGRATION OF HYDROGEN GUEST MOLECULES THROUGH CLATHRATE CAGES.Alavi, Saman, Ripmeester, John A. 07 1900 (has links)
Electronic structure calculations are performed to determine the barriers to migration of
molecular hydrogen in clathrate cages. The barriers are used in a chemical reaction rate
expression to determine the rate of H2 migration and the diffusion coefficient for the hydrogen
guest molecules. Calculations are performed for migration of hydrogen guests through pentagonal
and hexagonal clathrate cage faces. Cage faces where the water molecules obey the water rules
and cage faces with Bjerrum L and D defects are considered. The migration barriers were
calculated to be ≈25 kcal/mol from the pentagonal faces and between 5 to 6 kcal/mol for the
hexagonal faces, depending on the orientation of the hydrogen molecule.
|
80 |
Magnio hidrido plonų dangų, skirtų vandenilio saugojimui gavimas, panaudojant garinimą reaktyvioje aplinkoje / Development of magnesium hydride thin films used for hydrogen storage employing magnetron sputtering in reactive atmosphereBartninkas, Aurimas 02 February 2012 (has links)
Vienas iš didžiausių iššūkių su kuriais susiduria kompanijos norėdamos panaudoti vandenilio energetikos technologijas įvairiuose prietaisuose – vandenilio saugojimas. Dabartiniu metu egzistuoja trys technologijos, kurios naudojamos vandenilio saugojimui: suspaustas, kriogeninis vandenilis ir vandenilio saugojimas kompleksiniuose junginiuose. Suspaustas ir atšaldytas vandenilis jau pasiekė savo technologinius limitus. Daugiausiai vilčių dedama į vandenilio saugojimą kompleksinėse anglies nanostruktūrose ir metalų hidriduose. Šis darbas yra susijęs su bandymu sintetinti magnio hidridą, panaudojant magnetroninio garinimo sistemą, garinant magnį vandenilio ir argono reaktyvioje aplinkoje. Magnio hidridas yra vienas iš labiausiai tiriamų metalų hidridų vandenilio saugojimui. Deja, dabartiniu metu nėra sukurta technologiškai paprastų patikimų (greita vandenilio absorbcija ir desorbcija, minimalūs nuostoliai ir t.t) ir ekonomiškai efektyvių magnio hidrido sintezės metodų. Darbe gautos struktūros ištirtos panaudojant paviršiaus profilometrijos, SEM, EDS ir XRD metodus. Gauti rezultatai parodė, kad gautos struktūros yra tik dalinai magnio hidridas. / Hydrogen storage is one of the main challenges related with the use of hydrogen energy technologies in daily activities. Three main technologies for hydrogen storage available today: compressed, krio hydrogen and hydrogen storage in different compounds. Compressed and crio hydrogen almost reached its technological limits. A lot of expectations were related with hydrogen storage in carbon nanostructures and metal hydrides. This work is mainly related with magnesium hydride synthesis using magnetron sputtering in reactive hydrogen and argon atmosphere. Magnesium hydride is one of the most promising material. Unfortunately, there is no technologically simple and reliable methods (fast adsorbion/desorption kinetics, minimal losses and etc.) for magnesium hidride synthesis. The magnesium based structures which were received during the work were analyzed using SEM and EDS, surface profilometry and XRD methods. It is shown that received structure only partially transformed to magnesium hydride.
|
Page generated in 0.047 seconds