Spelling suggestions: "subject:"[een] HYDROGEN STORAGE"" "subject:"[enn] HYDROGEN STORAGE""
111 |
Conception et simulation d'un réservoir d'hydrure de magnésium avec récupération de la chaleur de réaction à l'aide d'un matériau à changement de phase / Numerical simulation and development of a magnesium hydride tank with a recycling system of the heat of hydrogen desorption reactionGarrier, Sylvain 31 January 2011 (has links)
La thèse porte sur la conception et la simulation d'un réservoir de stockage solide de l'hydrogène sous forme d'hydrure de magnésium (MgH2). La particularité du réservoir conçu réside dans sa capacité à stocker l'énergie d'absorption grâce à un matériau de changement de phase (MCP). Afin de pouvoir prouver la viabilité du système, une étude portant sur le comportement de l'hydrure de magnésium compacté lors du cyclage à été effectuée. Celle-ci montre qu'après 100 cycles, les cinétiques de réaction et les taux massiques de stockage d'hydrogène ne sont pas affectés. En revanche, un changement de morphologie important a été observé puisqu'une dilatation ainsi qu'une augmentation importante de la conductivité des matériaux composites ont été relevées. L'étude du MCP révéla l'importance de certains paramètres, en particulier la conductivité thermique et l'enthalpie de fusion. Le MCP sélectionné est un alliage métallique en composition eutectique. Celui ci est bon conducteur de chaleur, présente une enthalpie de fusion élevée et une stabilité de comportement thermique au cyclage. Le réservoir construit contient 10 kg d'hydrure de magnésium co-broyé + 5 % de Graphite Naturel Expansé. Il est capable de stocker 7000 NL d'hydrogène (625 g) en 3h. L'avantage principal du réservoir est son efficacité énergétique, puisque la chaleur stockée par le MCP à l'absorption est refournie lors de la désorption. Afin de pouvoir prédire les comportements thermiques et cinétiques des prochains réservoirs basés sur cette technologie, 2 modèles numériques utilisant Matlab et Fluent ont été développés et validés. / The thesis's subject is about creation and modeling of a solid state hydrogen tank using magnesium hydride (MgH2). The main characteristic of this tank is the ability to store the heat of absorption due to the use of a Phase Change Material (PCM). In order to prove the sustainability of this system, a study, on the magnesium hydride's behavior, has been carried out. On one hand, kinetic properties and the amount of the stored hydrogen do not decrease after 100 cycles. On the other hand, a significant change on material morphology has been noticed. Indeed, a swelling and an increasing of thermal conductivity have been measured. Investigations about the MCP showed the importance of the thermal conductivity and the heat of fusion. That's why a metallic eutectic alloy has been selected. His atomic composition is Mg69Zn28Al3, he is a good thermal conductor, having a high heat of fusion, and presenting a good chemical stability during cycling. The designed tank contains 10 kg of magnesium hydride ball-milled added with Expanded Natural Graphite. It can absorb 7000 NL (625 g) of hydrogen in 3 hours and a half. On one total cycle, the energetic efficiency can be estimated to more than 70 %. At the same time, two numerical modeling have been achieved with Fluent and Matlab softwares, in order to make the design of next generation of tanks easier.
|
112 |
Modificação superficial de ligas armazenadoras de hidrogênio por óxidos metálicos a partir do método sol-gel / Surface modification on hydrogen storage alloys by metal oxides via sol-gel routeBocutti, Rosangela 26 May 2003 (has links)
Este trabalho consiste na análise da modificação superficial da liga armazenadora de hidrogênio, MmNi3,4Co0,8Al0,8, através de óxidos de Cobre, Níquel e Cobalto, utilizando-se para tanto o método sol-gel. As técnicas de caracterização usadas para o recobrimento obtido, Microscopia Eletrônica de Varredura (MEV) e Redução Térmica Programada (RTP), permitiram a observação de uma \"rede\" formada pelos óxidos presentes nos recobrimentos que proporcionam a aglomeração das partículas da liga, sem contudo, impedir a interação de hidrogênio com o material. O estudo do comportamento eletroquímico do recobrimento foi realizado pelas técnicas de Voltametria Cíclica , Ciclos Galvanostáticos de Carga e Descarga e Espectroscopia de Impedância. Foi possível verificar que a camada de óxidos formada pelo recobrimento através do método sol-gel melhora o desempenho da liga: em relação a sua capacidade de descarga que é significativamente aumentada, principalmente no recobrimento por óxido de cobalto e também em relação a proteção contra a pulverização do material, que proporciona maiores números de ciclos de carga e descarga / This work consists in the analysis of the surface modification of the hydrogen storage alloy, MmNi3,4Co0,8Al0,8, threugh Copper, Nickel and Cobalt oxides, using for this the sol-gel method. The characterization techniques used for the obtained surfase modification (SEM and TPR) allowed the observation of a \" net \" formed by the presents oxides in the surface modification that provides the gathering of the alloys particles, without however, to harm the hydrogen interaction with the material. The study of the electrochemical behavior of the surface modification was carried out by the techniques of Cyclic Voltammetry, Charge/Discharge cycles and Electrochemical Impedance. It was possible to verify that the oxides of layer formed by the surface modification for the sol-gel method improves the alloy performance: in relation to its discharge capacity that is significantly increased, mainly in the surface modification by oxide of cobalt, and also in relation to the protection against the deterioration of the material, that provides higher numbers of cycles charge and discharge
|
113 |
Synthesis and characterization of B-substituted nanoporous carbon with high energy of hydrogen adsorption / Synthèse et caractérisation des carbones nanoporeux substitués au bore pour le stockage de l'hydrogèneWalczak, Katarzyna 13 December 2018 (has links)
L'utilisation intensive des combustibles fossiles et l’émission des produits de leur combustion (principalement du CO2) dans l'air ont déjà impacté le climat mondial. Trouver des solutions technologiques permettant la conversion de l'économie mondiale aux carburants propres et renouvelables devient urgent. Une de possibilités consiste en utilisation de l’hydrogène comme un vecteur d’énergie. Aujourd’hui elle est limitée par l’absence d’un matériau permettant son stockage à des températures ambiantes et à des pressions modérées.Dans ce projet, nous explorons la possibilité de préparer un nouveau matériau pour un stockage réversible de l’hydrogène par physisorption : les carbones nanoporeux substitués au bore. Nous montrons que la synthèse en arc électrique peut être optimisée pour produire des structures graphitisées, avec la variété de tailles, de formes et d'interconnexions entre les fragments de graphène. Leur morphologie, structure, composition chimique et homogénéité de la distribution de l’hétéroatome dans la structure carbonée ont été caractérisés par les techniques SEM, HRTEM, EELS, XRD et spectroscopie RMN. La porosité et propriétés adsorptives ont été étudiées en utilisant les mesures d’adsorption de l’azote à T= 77 K.Les deux paramètres essentiels pour un stockage efficace de l’hydrogène dans les conditions ambiantes sont la surface spécifique de l’adsorbant et l’énergie avec laquelle les molécules du gaz sont adsorbées sur cette surface. Nous montrons que la surface spécifique d’adsorption peut être contrôlée et augmentée par une activation thermique ou chimique pour optimiser le stockage, et que la présence du bore dans les structures carbonées permet de doubler l’énergie d'adsorption d'hydrogène du matériau. / The intensive use of fossil fuels and the emission of combustion products (mostly CO2) to air have already impacted global climate. We urgently need to find a technological solution to convert the global energy economy towards cleaner and renewable fuels. A possible solution consists in using hydrogen as energy vector. Today this technology is limited by the absence of material that could efficiently store hydrogen at ambient temperature and moderate pressures.In this project we explore the possibility to prepare a new material for reversible hydrogen storage by physisorption: boron-substituted nanoporous carbons. We show that electric arc discharge synthesis may be optimized to produce graphitized structures with a variety of graphene fragment sizes, forms, and interconnections between them. The morphology, structure, chemical composition, and homogeneity of boron distribution over the carbon samples were characterized using SEM, HRTEM, EELS, and XRD techniques, and HR solid state NMR. The porosity and adsorption parameters were determined from isotherms of nitrogen adsorption at T = 77 K.Two parameters that are essential for efficient hydrogen storage at ambient conditions are sorbent specific surface and the energy of gas adsorption at this surface. We show that material specific surface can be controlled and increased by thermal and/or chemical activation to enhance storage capacity, and that hydrogen adsorption energy in boron containing samples is twice as high as in all- carbon material.
|
114 |
L'hydrazine borane et ses dérivés, nouveaux matériaux pour le stockage chimique de l'hydrogène / Hydrazine borane and derivatives, news materials for chemical hydrogen storageMoury, Romain 15 October 2013 (has links)
Dans ce manuscrit, nous trouverons l'étude et la caractérisation de 3 nouveaux matériaux pour le stockage chimique de l'hydrogène : l'hydrazine borane (N2H4BH3, HB avec 15.3 % m H) et les hydrazinidoboranes de lithium (LiN2H3BH3, LiHB avec 11.6 % m H) et de sodium (NaN2H3BH3, NaHB avec 8.8 % m H). Ces matériaux font partie de la famille des boranes, récemment envisagés comme des matériaux prometteurs pour le stockage chimique de l'hydrogène. Comme exemple type, nous pouvons citer l'ammoniaborane (NH3BH3, AB avec 19.6 % m H), car il possède une capacité massique théorique en hydrogène élevée et débute sa déshydrogénation à une température modérée (122°C). Cependant, la cinétique de déshydrogénation de AB est lente. En outre, des gaz nocifs à la pile à combustible, tel que de la borazine, sont émis au cours de la thermolyse. Dans ce contexte, des dérivés, à savoir les amidoboranes, ont été synthétisés pour améliorer les performances de AB. En effet, les amidoboranes de lithium (LiNH2BH3) et de sodium (NaNH2BH3) génèrent 10.9 et 7.5 % m H (respectivement) à 90°C sans période d'induction et sans formation de borazine. Pour notre étude, nous avons choisi de suivre une stratégie similaire de déstabilisation ; nous avons travaillé sur la modification chimique du HB. Dans le premier chapitre nous présentons le protocole de synthèse de HB ainsi que sa caractérisation chimique, structurale et thermique. La synthèse, une métathèse de sel, a été une optimisation du protocole mis en place en 1961 par Goubeau et Ricker. Nous l'avons optimisé en termes de coût, de rendement (≈ 80 %) et de pureté (≥ 99 %). Les caractérisations chimique et structurale nous ont révélé la présence d'un réseau de liaisons Hδ+•••Hδ-, ce qui confère à HB son état solide ainsi que sa stabilité à température ambiante. Cependant, ce réseau ne met pas en jeu la totalité des motifs de HB, au contraire de AB. Les caractérisations thermiques nous ont confirmé cette observation par une diminution de la température de début de déshydrogénation d'environ 60°C et l'absence de période d'induction lors de la décomposition isotherme. Aucune émission de borazine n'a été enregistrée. Cependant, nous avons mis en avant la formation de N2H4 et de NH3. Par des mesures volumétriques, nous avons enregistré que HB est capable de libérer 6.2 % m H en 3 h à 110°C. Les deux chapitres suivants traitent de la synthèse et caractérisation des hydrazinidoboranes de lithium (chapitre II) et de sodium (chapitre III). Les analyses chimique et structurale ont mis en avant une augmentation du degré de liberté du groupement BH3 pour ces deux matériaux par rapport celui de HB, mais aussi la présence d'un réseau de liaisons Hδ+•••Hδ- moins complexe que dans HB. La synthèse de LiHB donne lieu à la formation de deux polymorphes notés ici α- et β-LiHB. Dans nos conditions, NaHB et LiHB ont présenté des propriétés de déshydrogénation plus intéressantes que HB, avec une déshydrogénation totale lorsqu'ils sont tous deux soumis à une rampe de température. En outre, il a été remarqué une nette diminution de l'émission de NH3 (sans N2H4). Pour NaHB, cette émission peut être supprimée par l'ajout d'un excès de NaH lors de la synthèse. La cinétique de déshydrogénation est également améliorée. Nous avons enregistré une déshydrogénation quasi-totale en 1 h à 150°C pour LiHB (2.6 équiv. H2) et en 24 s à 110°C pour NaHB (2.5 équiv. H2). NaHB montre par ailleurs un comportement non conventionnel lors de sa décomposition à des températures supérieures à 100°C ; il libère la quasi-totalité de son hydrogène en quelques minutes à une vitesse de 4 L H2/min à 110°C. Ces matériaux ont donc démontrés leur potentiel pour le stockage chimique de l'hydrogène. / In this manuscript, we present the study and characterization of three new materials for chemical hydrogen storage: i.e. hydrazine borane (N2H4BH3, HB with 15.3 wt % H), lithium and sodium hydrazinidoboranes (LiN2H3BH3, LiHB with 11.6 wt % H and NaN2H3BH3, NaHB with wt 8.8 % H). These materials belong to boranes' family, which have recently been seen as promising materials for chemical hydrogen storage. A typical example of such materials is ammoniaborane, which has a high theoretical hydrogen content (NH3BH3, AB with 19.6 wt % H) and starts it dehydrogenation at moderate temperature (122°C). However, the dehydrogenation kinetics of AB is slow. In addition, some gaseous impurities are detected; e.g. borazine has been often reported to form. In this context, derivatives of AB, i.e. amidoboranes, have been synthesized with the objective to improve the dehydrogenation properties of the parent AB. Lithium and sodium amidoboranes (LiNH2BH3 and NaNH2BH3) generates 10.9 and 7.5 wt % H (respectively) at 90 ° C without any induction period and no borazine formation. For our study, we have chosen to follow a similar strategy in order to destabilize HB by chemical modification. In the first chapter, we report the synthesis protocol of HB and its chemical, structural and thermal characterizations. The synthesis, which is a salt metathesis, is an optimization of the protocol established in 1961 by Goubeau and Ricker. We optimized it in terms of cost, yield (≈ 80%) and purity (≥ 99%). The chemical and structural characterizations have revealed the presence of a Hδ+••• Hδ- network conferring the solid state to the borane as well as its stability in room conditions. However, the network does not involve all of the HB molecules unlike in the case of AB. Thermal characterizations have confirmed this observation through a decreased onset temperature of about 60 °C and the absence of an induction period. No emission of borazine was besides recorded. However, we put forward the formation of N2H4 and NH3. By volumetric measurements, we demonstrated that HB is able to release 6.2 wt % H2 in 3 h at 110 ° C. Chapters II and III deal with the synthesis and characterization of lithium (Chapter II) and sodium (Chapter III) hydrazinidoboranes. We performed detailed chemical and structural characterizations that revealed an increase of the degree of freedom of the BH3 group for these materials compared to HB, but also the presence of the Hδ+ •••Hδ- network but it is less complex than in HB. The LiHB synthesis has put forward the formation of two polymorphs, here noted α- and β-LiHB. In our conditions, Na- and Li-HB have presented more attractive dehydrogenation properties compared to HB, with a total dehydrogenation and a net decrease in the emission of NH3 (without N2H4) when both materials are subjected to a temperature ramp. The emission of unwanted NH3 can be hindered for NaHB by adding an excess of NaH during the synthesis. The dehydrogenation kinetics is also improved. We recorded an almost complete dehydrogenation with 2.6 equiv. H2 in 1 h at 150 ° C for LiHB and with 2.5 equiv. H2 in 24 s at 110 ° C for NaHB. Note that NaHB shows an unconventional behavior upon isothermal decomposition at temperatures above 100 ° C since it releases substantially all of its hydrogen in few minutes with the very high rate of 4 L H2/min at 110 ° C. These materials have thus demonstrated their potential for chemical hydrogen storage.
|
115 |
Electrochemical applications of nano-structured carbonsMartin, Jeffrey Brendan January 2010 (has links)
Carbon nanotubes (CNTs) have been assessed for their use in electrochemical energy storage applications, namely Hydrogen Storage and Vanadium Redox Flow Batteries. Furthermore;fundamental electrochemical studies have been conducted on aligned arrays of carbon nanotubes, and for the first time electrochemistry on pure, defect free, single layer graphene is reported. CNTs have been assessed for their potential as an electrochemical hydrogen storage material,finding a maximum recorded capacity for a single walled nanotube sample (SWNT) that was comparable to literature gas phase adsorption values. In-situ Raman spectroelectrochemistry was used to probe structural changes of the SWNTs with applied potential: no chemical functionalisation of the tubes or intercalation of protons was observed. It was concluded, therefore, that CNTs present no unique electrochemical hydrogen storage ability, other than their role as an adsorbent for gaseous hydrogen, which was evolved electrochemically. CNTs were also assessed as a possible electrode material for the VO(2+)/VO2(+) reaction, used in the positive half cell of commercial vanadium redox flow batteries and widely reported to exhibit quasi-reversible kinetics on carbon electrodes. Initial investigations revealed apparently reversible kinetics using a SWNT, the first time such a response has been observed on Carbon, and in contradiction to published work using CNTs for this application. Analysis via a range of electrochemical techniques highlighted the difficulty in using cyclic voltammetry to assess reversibility, particularly for CNT modified electrodes. The system was subsequently found to be quasi-reversible, with the deceptively small peak separation inferred to arise from the pores of the CNT electrode, therefore thin layer cell behaviour was observed. The porous contribution was confirmed using an electrode exhibiting poor kinetics (very small, indistinct Faradaic peaks), increasing the electrode porosity (using an aligned array of CNT) had a remarkable effect, with large Faradaic peaks (low separation ˜ 0.02-0.04 V) observed for a sample that was chemically identical. This work highlights the fundamental error in a portion of CNT literature, where kinetic enhancement is quantified by voltammetric peak separation, which can be erroneous unless the inherent porosity of the electrodes is considered. In contrast to the complexity of CNTs, graphene represents an ideal electrode material, allowing for direct determination of the electrochemical response of the graphene basal plane, eliminating the contribution of edge sites. An initial investigation towards this goal is presented.
|
116 |
Synthesis, characterization and electro-catalytic applications of metal Nanoparticles-decorated Carcon Nanotubes for hydrogen storageMasipa, Pheladi Mack January 2013 (has links)
Thesis (M.Sc (Chemistry)) --University of Limpopo, 2013 / Since their discovery in 1991, CNTs have shown extraordinary properties and as result, these materials are being investigated for several different applications. Synthesis and electrochemical application of CNTs for hydrogen storage provide new possibilities for replacement of gasoline use in vehicles due to its cost and
negative environmental impact.
The study investigated the metal nanoparticles modified multi-walled carbon
nanotubes as possible storage material for hydrogen. Herein, carbon nanotubes were successfully synthesized by pyrolysis of iron (II) phthalocyanine under Ar/H2 reducing atmosphere at 900 oC for 30 min. The micro-structural information of the as-prepared carbon nanotubes was examined by Transmission electron microscopy (TEM). It was found that the prepared CNTs were multi-walled with iron particles impurities present on the surface. Synthesized MWCNTs were found to have open tips as shown by TEM images. These materials were purified and functionalized with acid groups as confirmed by Fourier transform infra-red spectroscopy (FTIR). A successful decoration of MWCNTs by Cu, CuO, Fe, Fe2O3, Ni and NiO nanoparticles was confirmed by Scanning electron
miscroscopy (SEM) and Transmission electron microscopy (TEM). TEM images showed that metal nanoparticles and metal oxides were well dispersed on the surface of the MWCNTs. The chemical composition of the as-prepared MWCNTs was confirmed by XRD (showing the presence of metal impurities and
amorphous carbon).
Synthesized materials were applied in electrochemical techniques such as cyclic
voltammetry, chronopotentiometry and controlled potential electrolysis. These
techniques have shown that modification of glassy carbon bare electrode (GCE) with carbon nanotubes decorated with metal nanoparticles (Cu, Ni and Fe), improves the current density, charge-discharge voltages and discharge capacity for hydrogen storage (in a 6 M KOH aqueous electrolyte). It was shown that MWCNTs exhibit high conductivity, porosity and high surface area for hydrogen
storage. The increase in discharge capacity was as follows: GCE < GCE-MWCNT < GCE-MWCNT-M (M = Cu, Ni, Fe and/or metal oxides). This confirmed a successful modification of GCE with MWCNTs and MWCNT-M (M = Cu, Ni, Fe and/or metal oxides). The maximum discharge capacity of 8 nAh/g was obtained by GCE-MWCNTs-Ni electrode, corresponding to an H/C value of 28.32 x 10
It was confirmed that both Ni loading and MWCNTs loading have an impact on the current response, charge-discharge voltages and discharge capacity. A maximum current density and discharge current was reached when a 4wt% nickel was loaded. A decrease in current density and discharge current was
observed for nickel loading of higher than 4wt%. Thus suggests a possible decrease in surface area of the adsorbed material on the surface of the electrode for hydrogen storage. As more MWCNTs were added, a decrease in current density was observed. A 2wt% MWCNTs gave higher discharge current and this was possibly due to less hindrance on the surface of the electrode for hydrogen
to diffuse.
It was shown that calcining the metal nanoparticles result in particles agglomeration, as confirmed by Transmision electron microscopy (TEM). This resulted in a decrease in surface area of the working electrode. A low current response was observed compared to the uncalcined Ni nanoparticles. The highest exchange current density was obtained while using a GCE-MWCNT-Nical as compared to the GCE-MWCNT-Niuncal electrode. The applied discharge current in CPE was also shown to have influence on the discharge capacity. An increase in discharge capacity for the GCE-MWCNT-Ni (2wt% MWCNTs and 4wt% Ni) electrode was observed as more discharge current was applied. A decrease in discharge capacity for hydrogen was observed as more content of the MWCNT-Niuncal nanocomposite are added on the active surface area of the glassy carbon electrode.
|
117 |
Quest Towards the Design and Synthesis of Functional Metal-Organic Materials: A Molecular Building Block ApproachSava, Dorina F 29 June 2009 (has links)
The design of functional materials for specific applications has been an ongoing challenge for scientists aiming to resolve present and future societal needs. A burgeoning interest was awarded to developing methods for the design and synthesis of hybrid materials, which encompass superior functionality via their multi-component system. In this context, Metal-Organic Materials (MOMs) are nominated as a new generation of crystalline solid-state materials, proven to provide attractive features in terms of tunability and versatility in the synthesis process. In strong correlation with their structure, their functions are related to numerous attractive features, with emphasis on gas storage related applications.
Throughout the past decade, several design approaches have been systematically developed for the synthesis of MOMs. Their construction from building blocks has facilitated the process of rational design and has set necessary conditions for the assembly of intended networks.
Herein, the focus is on utilizing the single-metal-ion based Molecular Building Block (MBB) approach to construct frameworks assembled from predetermined MBBs of the type MNx(CO2)y. These MBBs are derived from multifunctional organic ligands that have at least one N- and O- heterochelate function and which possess the capability to fully saturate the coordination sphere of a single-metal-ion (of 6- or higher coordination number), ensuring rigidity and directionality in the resulting MBBs. Ultimately, the target is on deriving rigid and directional MBBs that can be regarded as Tetrahedral Building Units (TBUs), which in conjunction with appropriate heterofunctional angular ligands are capable to facilitate the construction of Zeolite-like Metal-Organic Frameworks (ZMOFs). ZMOFs represent a unique subset of MOMs, particularly attractive due to their potential for numerous applications, arising from their fully exploitable large and extra-large cavities.
The research studies highlighted in this dissertation will probe the validity and versatility of the single-metal-ion-based MBB approach to generate a repertoire of intended MOMs, ZMOFs, as well as novel functional materials constructed from heterochelating bridging ligands. Emphasis will be put on investigating the structure-function relationship in MOMs synthesized via this approach; hydrogen and CO2 sorption studies, ion exchange, guest sensing, encapsulation of molecules, and magnetic measurements will be evaluated.
|
118 |
Molecular Simulations of Adsorption and Diffusion in Metal-Organic Frameworks (MOFs)Xiong, Ruichang 01 May 2010 (has links)
Metal-organic frameworks (MOFs) are a new class of nanoporous materials that have received great interest since they were first synthesized in the late 1990s. Practical applications of MOFs are continuously being discovered as a better understanding of the properties of materials adsorbed within the nanopores of MOFs emerges. One such potential application is as a component of an explosive-sensing system. Another potential application is for hydrogen storage.
This work is focused on tailoring MOFs to adsorb/desorb the explosive, RDX. Classical grand canonical Monte Carlo (GCMC) and molecular dynamic (MD) simulations have been performed to calculate adsorption isotherms and self-diffusivities of RDX in several IRMOFs. Because gathering experimental data on explosive compounds is dangerous, data is limited. Simulation can in part fill the gap of missing information. Through these simulations, many of the key issues associated with MOFs preconcentrating RDX have been resolved. The issues include both theoretical issues associated with the computational generation of properties and practical issues associated with the use of MOFs in explosive-sensing system. Theoretically, we evaluate the method for generating partial charges for MOFs and the impact of this choice on the adsorption isotherm and diffusivity. Practically, we show that the tailoring of an MOF with a polar group like an amine can lead to an adsorbent that (i) concentrates RDX from the bulk by as much as a factor of 3000, (ii) is highly selective for RDX, and (iii) retains sufficient RDX mobility allowing for rapid, real time sensing.
Many of the impediments to the effective explosive detection can be framed as shortcomings in the understanding of molecule surface interactions. A fundamental, molecular-level understanding of the interaction between explosives and functionalized MOFs would provide the necessary guidance that allows the next generation of sensors to be developed. This is one of the main driving forces behind this dissertation.
Another important achievement in this work is the demonstration of a new direction for tailoring MOFs. A new class of tailored MOFs containing porphyrins has been proposed. These tailored MOFs show greater capability for hydrogen storage, which also demonstrated the great functionalization of MOFs and great potential to serve as preconcentrators.
The use of a novel multiscale modeling technique to develop equations of state for inhomogeneous fluids is included as a supplement to this dissertation.
|
119 |
Materials for Hydrogen storage and synthesis of new materials by hydrogenation / Material för vätelagring och syntes av nya material genom hydreringLuzan, Serhiy January 2012 (has links)
The search for new materials for hydrogen storage is important for the development of future hydrogen energy applications. In this Thesis, it is shown that new materials with interesting properties can be synthesized by the reaction of hydrogen with various nanocarbon precursors. The thesis consists of two parts. The first part is devoted to studies of hydrogen storage in some metal-organic frameworks (MOFs) and nanostructured carbon materials, while the second part describes synthesis of new materials by the reaction of hydrogen gas with various carbon materials (i.e. fullerene C60, single-walled carbon nanotubes (SWCNTs), and fullerene C60 encapsulated inside SWCNTs (C60@SWCNTs)). Hydrogen adsorption was measured for a set of Zn- and Co-based MOFs at near ambient temperatures. MOFs synthesized using different metal clusters and organic connecting ligands allowed to study effects of different surface area, pore volume, and pore shapes on hydrogen storage parameters. Hydrogen adsorption values in the studied MOFs correlated well with surface area and pore volume but did not exceed 0,75wt.%. Therefore, new methods to improve the hydrogen storage capacity in MOFs were investigated. The addition of metal catalysts was previously reported to improve significantly hydrogen storage in MOFs. In this thesis the effect of Pt catalyst addition on hydrogen adsorption in MOF-5 was not confirmed. Contrary to previous reports, hydrogen adsorption in MOF-5 mixed/modified with Pt catalysts had fast kinetics, correlated well with surface area, and was on the same level as for unmodified MOF-5. New nanostructured carbon materials were synthesized by the reaction between fullerene C60 and coronene/anthracene. Despite negligible surface area these materials adsorbed up to 0,45wt.% of hydrogen at ambient temperatures. The reaction of fullerene C60 with hydrogen gas was studied at elevated temperatures and hydrogen pressures. In situ gravimetric monitoring of the reaction was performed in a broad temperature interval with/without addition of metal catalysts (i.e. Pt and Ni). The reaction resulted in synthesis of hydrogenated fullerenes C60Hx (with x≤56) followed by fullerene cage fragmentation and collapse upon prolonged duration of hydrogen treatment. Possible mechanisms of C60 hydrogenation and fragmentation were discussed. It is demonstrated that reaction of SWCNTs with hydrogen gas at elevated temperatures and hydrogen pressures can be used for nanotube opening, purification from amorphous carbon, side-wall hydrogenation, and partial unzipping of SWCNTs. Some graphene nanoribbons (GNRs) were synthesized as the result of SWCNTs unzipping. A surprising ability of hydrogen to penetrate inside SWNTs and to react with encapsulated fullerene C60 was demonstrated. / Sökandet efter nya material för vätelagring är viktigt för utveckling av framtida väteenergitillämpningar. I denna avhandling visas att nya material med intressanta egenskaper kan syntetiseras genom reaktion av väte med olika nanokolprekursorer. Avhandlingen består av två delar. Den första delen ägnas åt studier av vätelagring i vissa metall-organiska fackverk (så kallade MOFs) och nanostrukturerade kolmaterial medan den andra delen beskriver syntes av nya material genom reaktion av vätgas med olika kolmaterial (dvs. fulleren C60, enkelväggiga kolnanorör (SWCNTs) och fulleren C60 kapslat i SWCNTs (C60 @ SWCNTs)). Väteadsorptionen mättes för ett antal Zn- och Co-baserade MOFs vid rumstemperatur. MOFs syntetiserades med hjälp av olika metallkluster och organiska ligander för att studera effekterna av olika yta, porvolym och porformer på vätelagringsparametrarna. Väteadsorptionsvärden i de studerade MOFs korrelerade väl med yta och porvolym, men översteg inte 0,75wt.%. Därför undersöktes nya metoder för att förbättra kapaciteten för vätelagring i MOFs. Tillsättning av metallkatalysatorer har tidigare rapporterats avsevärt förbättra vätelagring i MOFs. I denna avhandling kunde effekten av en tillsats av Pt-katalysator på väteadsorption i MOF-5 inte bekräftas. I motsats till tidigare rapporter hade väteadsorption i MOF-5 blandad/modifierad med Pt-katalysatorer snabb kinetik och korrelerade väl med arean, men var på samma nivå som för omodifierad MOF-5. Nya nanostrukturerade kolmaterial syntetiserades genom reaktion mellan fulleren C60 och coronene/antracene. Trots försumbar yta adsorberade dessa material upp till 0,45wt.% väte vid rumstemperatur. Reaktionen av fulleren C60 med vätgas studerades vid förhöjda temperaturer och vätetryck. In situ gravimetrisk övervakning av reaktionen utfördes i ett brett temperaturintervall med/utan tillsats av metallkatalysatorer (dvs. Pt och Ni). Reaktionen resulterade i syntes av hydrogenerade fullerener C60Hx (med x≤56) följt av fragmentering och kollaps av fullerenstrukturen vid förlängd varaktighet av vätebehandlingen. Möjliga mekanismer för hydrering och fragmentering av C60 diskuteras. Det har visats att reaktionen mellan SWCNTs och vätgas vid förhöjda temperaturer och vätetryck kan användas för öppning av nanorör, borttagning av amorft kol, funktionalisering av sidoväggar och partiell "blixtlåsöppning" av SWCNTs. Reaktionen kan också syntetisera grafen-nanoband (GNRs) som en följd av att SWCNTs öppnas på längden. En överraskande stor förmåga för väte att tränga in i SWNT och där reagera med inkapslade fullerenmolekyler C60 demonstrerades.
|
120 |
Light-Metal Hydrides for Hydrogen StorageSahlberg, Martin January 2009 (has links)
Demands for zero greenhouse-gas emission vehicles have sharpened with today’s increased focus on global warming. Hydrogen storage is a key technology for the implementation of hydrogen powered vehicles. Metal hydrides can claim higher energy densities than alternative hydrogen storage materials, but a remaining challenge is to find a metal hydride which satisfies all current demands on practical usability. Several metals store large amounts of hydrogen by forming a metal hydride, e.g., Mg, Ti and Al. The main problems are the weight of the material and the reaction energy between the metal and hydrogen. Magnesium has a high storage capacity (7.6 wt.% hydrogen) in forming MgH2; this is a slow reaction, but can be accelerated either by minimizing the diffusion length within the hydride or by changing the diffusion properties. Light-metal hydrides have been studied in this thesis with the goal of finding new hydrogen storage compounds and of gaining a better understanding of the parameters which determine their storage properties. Various magnesium-containing compounds have been investigated. These systems represent different ways to address the problems which arise in exploiting magnesium based materials. The compounds were synthesized in sealed tantalum tubes, and investigated by in situ synchrotron radiation X-ray powder diffraction, neutron powder diffraction, isothermal measurements, thermal desorption spectroscopy and electron microscopy. It is demonstrated that hydrogen storage properties can be improved by alloying magnesium with yttrium or scandium. Mg-Y-compounds decompose in hydrogen to form MgH2 nano-structures. Hydrogen desorption kinetics are improved compared to pure MgH2. The influence of adding a third element, gallium or zinc has also been studied; it is shown that gallium improves hydrogen desorption from YH2. ScAl1-xMgx is presented here for the first time as a hydrogen storage material. It absorbs hydrogen by forming ScH2 and Al(Mg) in a fully reversible reaction. It is shown that the hydrogen desorption temperature of ScH2 is reduced by more than 400 °C by alloying with aluminium and magnesium.
|
Page generated in 0.0409 seconds