• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 277
  • 50
  • 40
  • 40
  • 9
  • 9
  • 8
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 504
  • 179
  • 163
  • 90
  • 72
  • 66
  • 59
  • 56
  • 54
  • 49
  • 44
  • 42
  • 42
  • 42
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

An analysis on the simulation of the leakage currents of independent double gate SOI MOSFET transistors a thesis presented to the faculty of the Graduate School, Tennessee Technological University /

Moolamalla, Himaja Reddy, January 2009 (has links)
Thesis (M.S.)--Tennessee Technological University, 2009. / Title from title page screen (viewed on June 29, 2010). Bibliography: leaves 56-66.
102

Design and fabrication of silicon on insulator optical waveguide devices /

Harvey, Eric J. January 2006 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2006. / Typescript. Includes bibliographical references (leaves 171-181).
103

Linearity analysis of single and double-gate silicon-on-insulator metal-oxide-semiconductor-field-effect-transistor

Ma, Wei. January 2004 (has links)
Thesis (M.S.)--Ohio University, August, 2004. / Title from PDF t.p. Includes bibliographical references (p. 64-66)
104

The formation of silicon nanoparticles on silicon-on-insulator substrate by thermal annealing /

Anyamesem-Mensah, Benedict, January 1900 (has links)
Thesis (M.S.)--Texas State University-San Marcos, 2007. / Vita. Appendices: leaves 69-80. Includes bibliographical references (leaves 81-83).
105

Fabrication and I-V Characterization of ZnO Nanorod Based Metal-Insulator-Semiconductor Junction

Quang, Le Hong, Chua, Soo-Jin, Fitzgerald, Eugene A. 01 1900 (has links)
We report on the characteristics of a ZnO based metal insulator semiconductor (MIS) diode comprised of a heterostructure of n-ZnO nanorods/n-GaN. The MIS structure consisted of unintentional - doped n type ZnO nanorods grown on n-GaN sample using hydrothermal synthesis at low temperature (100°). The ZnO nanorod layer was vertically grown from the GaN sample, having the diameter 100nm and length 2µm. Then, an insulator layer for electrical isolation was deposited on the top of ZnO nanorod layer by using spin coating method. A metal layer (gold) was finally deposited on the top. The I-V dependences show a rectifying diode like behavior with a leakage current of 2.10⁻⁵ A and a threshold voltage of about 3V. Depend on the thickness of the insulator, the I-V dependences of the n-ZnO/n-GaN heterostructure was varied from rectifying behavior to Ohmic and nearly linear. / Singapore-MIT Alliance (SMA)
106

PHYSICAL PROPERTIES OF TOPOLOGICAL INSULATOR: BISMUTH SELENIDE THIN FILMS

Sapkota, Yub Raj 01 December 2017 (has links)
Topological Insulator (TI) is new classes of materials with gapless surface states and insulating bulk. The topological connection can be traced back to the discovery of Integer Quantum Hall Effect in 1980. In the last decade, new categories of topological insulators were predicted and later discovered, that have gained a lot of attraction for room-temperature applications. Since the experimental observation of single Dirac cone on the surface states of Bismuth selenide (Bi2Se3) in 2009, it has emerged as the prototype. Bismuth Selenide has one of the highest bulk band gaps of 0.3 eV among all TI materials. While its single crystal properties are well documented, thin films are producing equally exciting discoveries. In this work, Bi2Se3 thin films were synthesized using magnetron sputtering method and a diverse set of physical properties, such as structural, optical, and electronic, are investigated. In particular, properties of few-layer (ultra-thin) Bi2Se3 thin films are studied. Optical properties of Bi2Se3 was particularly revealing. We observed a sharp increase (blue shift) in the bulk band gap of Bi2Se3 by almost 0.5 eV as it approached the two-dimensional limit. Strong thickness-dependent structural and transport properties were also observed.
107

Mitigating oscillator pulling due to magnetic coupling in monolithic mixed-signal radio-frequency integrated circuits

Sobering, Ian David January 1900 (has links)
Master of Science / Department of Electrical and Computer Engineering / W. B. Kuhn / An analysis of frequency pulling in a varactor-tuned LC VCO under coupling from an on-chip PA is presented. The large-signal behavior of the VCO's inversion-mode MOS varactors is outlined, and the susceptibility of the VCO to frequency pulling from PA aggressor signals with various modulation schemes is discussed. We show that if the aggressor signal is aperiodic, band-limited, or amplitude-modulated, the varactor-tuned LC VCO will experience frequency pulling due to time-modulation of the varactor capacitance. However, if the aggressor signal has constant-envelope phase modulation, VCO pulling can be eliminated, even in the presence of coupling, through careful choice of VCO frequency and divider ratio. Additional mitigation strategies, including new inductor topologies and system-level architectural choices, are also examined. The analysis is then applied to improve a fully-integrated half-duplex UHF micro- transceiver in which signal coupling between the LO and PA caused frequency pulling that prevented the use of QPSK signaling at certain data rates. We determine that a VCO operating at 4x transmit frequency will be naturally insensitive to pulling from QPSK signals. To validate the proposed solution, a prototype IC containing a pair of QPSK transmitters with integrated 100mW Class-C PAs was designed and fabricated in 0.18um SOI. The transmitters--one utilizing a 2x VCO, one utilizing a 4x VCO-- were designed to closely match the performance of the original microtransceiver when transmitting QPSK data. The transmitter with the 2x VCO experienced frequency pulling from the PA while transmitting QPSK data, but the transmitter with the 4x VCO did not, thereby confirming the analysis in this work. A revision of the microtransceiver was designed in 0.5 [mu]m SOS utilizing an off- chip PA inductor to reduce signal coupling with the VCO. A second revision of the microtransceiver with two prototype transmitters was designed in 0.25 [mu]m SOS uti- lizing 4x VCOs and figure-8 VCO inductors for maximum insensitivity to pulling from QPSK and band-limited modulation, as well as other design improvements that leverage the higher f[subscript]t of the smaller process. Both revisions also include a hardware FSK modulator, a new charge pump, and a redesigned fractional-N synthesizer to attenuate a divided-reference spur in the IF output. These revisions of the radio will enable future researchers to focus on system-level applications where highly-integrated medium-power transceivers with fully-functioning IQ modulation are needed.
108

Estudo teórico de característica elétrica de contato schottky não íntimo metal-isolante amorfo e estrutura metal-isolante-metal / Theoric study of electrical of Schottky contact from metal-insulator-metal and metal-amorphous insulators structures

Marta Bueno de Moraes 01 September 1989 (has links)
No presente trabalho foi desenvolvida uma teoria de característica elétrica da estrutura metal-isolante-metal considerando uma camada fina de óxido entre o metal e o isolante, sendo o óxido um outro isolante de banda de energia proibida mais larga. Foi considerada uma distribuição energética uniforme de estados de impurezas à interface óxido-isolante. Estudamos a distribuição real do potencial na região de carga espacial usando a equação de Poisson. Através desta distribuição obtemos a relação entre o potencial de contato e a carga positiva na região de depleção e assim a característica capacitância-voltagem da estrutura. Este tipo de característica é útil para se calcular as características corrente em função do potencial e corrente em função do tempo para um dado potencial e deste modo é importante para o entendimento das estruturas MIM e MOIM. / In this work we have developed a theory of electric characteristic of the metal-oxide-insulator-metal structure, considering a thin film of oxide between metal and insulator; the oxide is another insulator of wider forbidden energy gap. A uniform energy distribution of impurity states at the oxide-insulator interface was considered. W e have studied the actual distribution of potential in the region of spatial charge using the Poisson equation. With this distribution we obtain the relation between the contact potential and the charge in the depletion region and then the characteristic potential - capacitance of t his structure. This type of characteristic is useful to calculate the characteristic current - potential, and current-time at a given potential . In this manner it is important to the understanding of MIM and MOIM structures.
109

Ultrafast Response of Photoexcited Carriers in Transition Metal Oxides under High Pressure

Braun, Johannes Martin 27 June 2019 (has links)
In this work, optical pump – near-infrared probe and near-infrared pump – mid-infrared probe spectroscopy are used for the investigation of pressure-induced insulator-tometal transitions in transition metal oxide compounds. The materials under study are a-Fe₂O₃, also known as hematite, and VO₂. Both materials undergo pressureinduced metallization. However, the physical mechanisms of this phase transition are very different for these systems and have not been fully understood up to now. Using ultrafast pump-probe spectroscopy we obtain an insight into the evolution of the band structure and electron dynamics across the insulator-to-metal transition. In the case of VO₂, our near-infrared pump – mid-infrared probe experiments reveal a non-vanishing pumping threshold for photo-induced metallization even at our highest pressures around 20 GPa. This demonstrates the existence of localized charge carriers and the corresponding persistence of a band gap. Besides the threshold behaviour for photo-induced metallization, the carrier relaxation time scale, and the linear reflectivity and transmissivity have been studied under pressure increase. An anomaly in the threshold behaviour as well as the linear reflectivity and transmissivity at a critical pressure around 7 GPa indicates band gap filling under pressure. This is further supported by results obtained under decompression, where the changes of the linear reflectivity turned out to be almost fully reversible. The observations on VO₂ are highly reproducible and can be explained in terms of a pressure-induced bandwidth-driven insulator-to-metal transition. Fe₂O₃ has been studied via optical pump – near-infrared probe spectroscopy up to pressures of 60 GPa. In the pressure range up to 40 GPa, the changes of the response can be explained by photo-induced absorption and bleaching. The pressure-dependent study of the relaxation dynamics allows to identify cooling of the electron system as origin of the picosecond relaxation process.
110

Synthesis and Electrical Behavior of VO2 Thin Films Grown on SrRuO3 Electrode Layers

Chengyang Zhang (12889487) 17 June 2022 (has links)
<p>  </p> <p>In this study, VO2 films were grown on conducting oxide SrRuO3 layers. Apart from applications in magnetism, SrRuO3 is a widely studied template material to create multi-functional oxide heterostructures. Here, SrRuO3 buffered SrTiO3 (111) and Si/SiO2 were selected as platforms for VO2 growth. The properties of VO2 thin films grown on SrRuO3 buffer layers, as well as thermally and electric-field induced metal-insulator transition were systematically studied. Numerous growth experiments were conducted to identify the optimal growth conditions. Utilizing the current shunting associated with the conductive underlayer, electric-field induced metal-insulator transition was investigated in both the in-plane and out-of-plane configurations. A distributed resistance network with general applicability to understanding metal-insulator transitions is proposed to predict the electrical behavior of VO2 grown on conducting layers.</p>

Page generated in 0.0414 seconds