Spelling suggestions: "subject:"[een] ION"" "subject:"[enn] ION""
281 |
Structure function studies of muscle-type CIC chloride channels.Bennetts, Brett January 2008 (has links)
ClC proteins are chloride channels and transporters that are found in a wide variety of prokaryotic and eukaryotic cell-types. The mammalian chloride channel ClC-1 is an important modulator of the electrical excitability of skeletal muscle. The Torpedo electric-organ chloride channel, ClC-0 is structurally and functionally similar to ClC- 1. These proteins are referred to as the muscle-type ClC channels. The present work identifies several functional differences between the muscle type channels, and explores the structural basis of these and other previously reported differences. First the temperature dependence of ClC-1 channels was quantified. These calculations revealed distinct contrasts to previously published measurements of ClC-0 temperature sensitivity, indicating differences between the channels in the structural rearrangements associated with channel gating. Next the effect of extracellular ion substitution on ClC-0 function was examined. These measurements suggested that occupancy of an anion binding-site on the extracellular side of the selectivity-filter stabilises the open state of the channel, and that the diameter of the channel pore increases during channel opening. Three-dimensional models of the muscle-type channels were constructed based on the atomic coordinates of prokaryotic homologues. Differences in selectivity between ClC-0 and ClC-1 could be rationalised, in part, by differences in the chemistry of the narrow constriction of the channel pore. The major structural divergence between the muscle-type channels occurs in the expansive intracellular carboxy terminus. Replacing this region of ClC-1 with the corresponding region from ClC-0 resulted in distinct changes in common gating of the channel. These experiments rigorously characterise the dependence of ClC-1 function on temperature and the effect of foreign anionic-substrates on ClC-0 function. The results identify important residues involved in ionic selectivity of the channels, and validate the use of high-resolution prokaryotic channel structures as a predictive tool for studying the muscle-type channels. They also demonstrate that the carboxy-terminal of the channels is an important determinant of common gating. / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2008
|
282 |
Characterisation of Single Ion Tracks for use in Ion Beam LithographyAlves, Andrew David Charles, aalves@unimelb.edu.au January 2008 (has links)
To investigate the ultimate resolution in ion beam lithography (IBL) the resist material poly(methyl methacrylate) PMMA has been modified by single ion impacts. The latent damage tracks have been etched prior to imaging and characterisation. The interest in IBL comes from a unique advantage over more traditional electron beam or optical lithography. An ion with energy of the order of 1 MeV per nucleon evenly deposits its energy over a long range in a straight latent damage path. This gives IBL the ability to create high aspect ratio structures with a resolution in the order of 10 nm. Precise ion counting into a spin coated PMMA film on top of an active substrate enabled control over the exact fluence delivered to the PMMA from homogenously irradiated areas down to separated single ion tracks. Using the homogenous areas it was possible to macroscopically measure the sensitivity of the PMMA as a function of the developing parameters. Separated single ion tracks wer e created in the PMMA using 8 MeV F, 71 MeV Cu and 88 MeV I ions. These ion tracks were etched to create voids in the PMMA film. For characterisation the tracks were imaged primarily with atomic force microscopy (AFM) and also with scanning electron microscopy (SEM). The series of studies presented here show that the sensitivity of the resist-developer combination can be tailored to allow the etching of specific single ion tracks. With the ability to etch only the damage track, and not the bulk material, one may experimentally characterise the damage track of any chosen ion. This offers the scientific community a useful tool in the study and fabrication of etched ion tracks. Finally work has been conducted to allow the precise locating of an ion beam using a nanoscale mask and piezoelectrically driven scanning stage. This method of beam locating has been trailed in conjunction with single ion detection in an effort to test the practical limits of ion beam lithography in the single ion realm.
|
283 |
Structural rearrangements during gating in cyclic nucleotide-modulated channels /Craven, Kimberley Beth. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 121-137).
|
284 |
Modeling of Ion Injection in Oil-Pressboard Insulation SystemsSonehag, Christian January 2012 (has links)
To make a High Voltage Direct Current (HVDC) transmission more energy efficient, the voltage of the system has to be increased. To allow for that the components of the system must be constructed to handle the increases AC and DC stresses that this leads to. One key component in such a transmission is the HVDC converter transformer. The insulation system of the transformer usually consists of oil and oil-impregnated pressboard. Modeling of the electric DC field in the insulation system is currently done with the ion drift diffusion model, which takes into account the transport and generation of charges in the oil and the pressboard. The model is however lacking a description of how charges are being injected from the electrodes and the oil-pressboard interfaces. The task of this thesis work was to develop and implement a model for this which improves the result of the ion drift diffusion model. A theoretical study of ion injection was first carried out and proceeding from this, a model for the ion injection was formulated. By using experimental data from 5 different test geometries, the injection model could be validated and appropriate parameter values of the model could be determined. By using COMSOL Multiphysics®, the ion drift diffusion model with the injection model could be simulated for the different test geometries. The ion injection gave a substantial improvement of the ion drift diffusion model. The positive injection from electrodes into oil was found to be in the range 0.3-0.6 while the negative injection was 0.3 lower. Determination of the parameters for the injection from oil-pressboard interfaces proved to be difficult, but setting the parameters in the range 0.01-1 allowed for a good agreement with the experimental data. Here, a fit could be obtained for multiple assumptions about the set of active injection parameters. Finally it is recommended that the investigation of the ion injection continues in order to further improve the model and more accurately determine the parameters of it. Suggestions on how this work could be carried out are given in the end.
|
285 |
Ion Crystals Produced by Laser and Sympathetic Cooling in a Linear RF Ion TrapZhu, Feng 2010 December 1900 (has links)
A detailed investigation of ion crystals produced by laser and sympathetic cooling in a linear RF trap has been conducted.
The laser cooling methods were examined and applied to the trapped ^24Mg^(positive) ions. The crystals produced by the laser cooling were studied, including the dependence on RF voltage, end cap DC voltage, laser power and laser frequency. By manipulating the different RF voltages and endcap DC voltages, the structure phase transition of the ion crystals was observed.
In addition, the sympathetic cooling of different ion species with the laser cooled 24Mg^(positive) was carried out. In this process, the mixed Mg^(positive) and He^(positive) crystals were created andidentified, and mixed Mg^(positive) and H2^(positive) crystals were produced. The effect of an unwanted chemical reaction of Mg^(positive) and H2 was observed and minimized. After sympathetic cooling of light ion species, the sympathetic cooling of heavy molecular ions such as fullerene ions was also carried out. The efficiencies and final temperature in both cases are very different. Theoretically to interpret the results, molecular dynamics simulations of the laser cooling and sympathetic cooling were implemented. And the simulations were compared with the experimental results.
In the process of carrying out this research, the optics were rebuilt to provide reliable UV sources for the photoionization and laser cooling of Mg ions. The imaging
system was reconfigured to take the images of ion crystals. New elements were added tin the ion trap to improve the ability to manipulate ions.
|
286 |
Analytical determination of fluorides in South African chemical gypsum /Motalane, Mpempe Paulus. January 2004 (has links)
Thesis (Ph.D.(Chemistry))--University of Pretoria, 2004. / Summaries in English and Afrikaans. Includes bibliographical references (leaves 229-238). Also available online.
|
287 |
Towards A Better Understanding of Lithium Ion Local Environment in Pure, Binary and Ternary Mixtures of Carbonate Solvents : A Numerical Approach / Etude théorique et numérique de l'interaction des ions lithium dans les solvants carbonates et leurs mélangesPonnuchamy, Veerapandian 23 January 2015 (has links)
En raison de l'augmentation de la demande d'énergie, ressources écologiques respectueux de l'environnement et durables (solaires, éoliennes) doivent être développées afin de remplacer les combustibles fossiles. Ces sources d'énergie sont discontinues, étant corrélés avec les conditions météorologiques et leur disponibilité est fluctuant dans le temps. En conséquence, les dispositifs de stockage d'énergie à grande échelle sont devenus incontournables, pour stocker l'énergie sur des échelles de temps longues avec une bonne compatibilité environnementale. La conversion d'énergie électrochimique est le mécanisme clé pour les développements technologiques des sources d'énergie alternatives. Parmi ces systèmes, les batteries Lithium-ion (LIB) ont démontré être les plus robustes et efficaces et sont devenus la technologie courante pour les systèmes de stockage d'énergie de haute performance. Ils sont largement utilisés comme sources d'énergie primaire pour des applications populaires (ordinateurs portables, téléphones cellulaires, et autres). La LIB typique est constitué de deux électrodes, séparés par un électrolyte. Celui-ci joue un rôle très important dans le transfert des ions entre les électrodes fournissant la courante électrique. Ce travail de thèse porte sur les matériaux complexes utilisés comme électrolytes dans les LIB, qui ont un impact sur les propriétés de transport du ion Li et les performances électrochimiques. Habituellement l'électrolyte est constitué de sels de Li et de mélanges de solvants organiques, tels que les carbonates cycliques ou linéaires. Il est donc indispensable de clarifier les propriétés structurelles les plus importantes, et leurs implications sur le transport des ions Li+ dans des solvants purs et mixtes. Nous avons effectué une étude théorique basée sur la théorie du fonctionnelle densité (DFT) et la dynamique moléculaire (MD), et nous avons consideré des carbonates cyclique (carbonate d'éthylène, EC, et carbonate de propylène, PC) et le carbonate de diméthyle, DMC, linéaire. Les calculs DFT ont fourni une image détaillée des structures optimisées de molécules de carbonate et le ion Li+, y compris les groupes pures Li+(S)n (S =EC,PC,DMC et n=1-5), groupes mixtes binaires, Li+(S1)m(S2)n (S1,S2=EC,PC,DMC, m+n=4), et ternaires Li+(EC)l(DMC)m(PC)n (l+m+n=4). L'effet de l'anion PF6 a également été étudié. Nous avons aussi étudié la structure de la couche de coordination autour du Li+, dans tous les cas. Nos résultats montrent que les complexes Li+(EC)4, Li+(DMC)4 et Li+(PC)3 sont les plus stables, selon les valeurs de l'énergie libre de Gibbs, en accord avec les études précédentes. Les énergies libres de réactions calculés pour les mélanges binaires suggèrent que l'ajout de molécules EC et PC aux clusters Li+ -DMC sont plus favorables que l'addition de DMC aux amas Li+-EC et Li+-PC. Dans la plupart des cas, la substitution de solvant aux mélanges binaires sont défavorables. Dans le cas de mélanges ternaires, la molécule DMC ne peut pas remplacer EC et PC, tandis que PC peut facilement remplacer EC et DMC. Notre étude montre que PC tend à substituer EC dans la couche de solvation. Nous avons complété nos études ab-initio par des simulations MD d'une ion Li immergé dans les solvants purs et dans des mélanges de solvants d'intérêt pour les batteries, EC:DMC(1: 1) et EC:DMC:PC(1:1:3). MD est un outil très puissant et nous a permis de clarifier la pertinence des structures découvertes par DFT lorsque le ion est entouré par des solvants mélangés. En effet,la DFT fournit des informations sur les structures les plus stables de groupes isolés, mais aucune information sur leur stabilité ou de la multiplicité (entropie) lorsqu'il est immergé dans un environnement solvant infinie. Les données MD, ainsi que les calculs DFT nous ont permis de donner une image très complète de la structure locale de mélanges de solvants autour le ion lithium, sensiblement amélioré par rapport aux travaux précédents. / Due to the increasing global energy demand, eco-friendly and sustainable green resources including solar, or wind energies must be developed, in order to replace fossil fuels. These sources of energy are unfortunately discontinuous, being correlated with weather conditions and their availability is therefore strongly fluctuating in time. As a consequence, large-scale energy storage devices have become fundamental, to store energy on long time scales with a good environmental compatibility. Electrochemical energy conversion is the key mechanism for alternative power sources technological developments. Among these systems, Lithium-ion (Li+) batteries (LIBs) have demonstrated to be the most robust and efficient, and have become the prevalent technology for high-performance energy storage systems. These are widely used as the main energy source for popular applications, including laptops, cell phones and other electronic devices. The typical LIB consists of two (negative and positive) electrodes, separated by an electrolyte. This plays a very important role, transferring ions between the electrodes, therefore providing the electrical current. This thesis work focuses on the complex materials used as electrolytes in LIBs, which impact Li-ion transport properties, power densities and electrochemical performances. Usually, the electrolyte consists of Li-salts and mixtures of organic solvents, such as cyclic or linear carbonates. It is therefore indispensable to shed light on the most important structural (coordination) properties, and their implications on transport behaviour of Li+ ion in pure and mixed solvent compositions. We have performed a theoretical investigation based on combined density Functional Theory (DFT) calculations and Molecular Dynamics (MD) simulations, and have focused on three carbonates, cyclic ethylene carbonate (EC) and propylene carbonate (PC), and linear dimethyl carbonate (DMC). DFT calculations have provided a detailed picture for the optimized structures of isolated carbonate molecules and Li+ ion, including pure clusters Li+(S)n (S=EC, PC, DMC and n=1-5), mixed binary clusters, Li+(S1)m(S2)n (S1, S2 =EC, PC, DMC, with m+n=4), and ternary clusters Li+(EC)l(DMC)m(PC)n with l+m+n=4. Pure solvent clusters were also studied including the effect of PF6- anion. We have investigated in details the structure of the coordination shell around Li+ for all cases. Our results show that clusters such as Li+(EC)4, Li+(DMC)4 and Li+(PC)3 are the most stable, according to Gibbs free energy values, in agreement with previous experimental and theoretical studies. The calculated Gibbs free energies of reactions in binary mixtures suggest that the addition of EC and PC molecules to the Li+-DMC clusters are more favourable than the addition of DMC to Li+-EC and Li+-PC clusters. In most of the cases, the substitution of solvent to binary mixtures are unfavourable. In the case of ternary mixtures, the DMC molecule cannot replace EC and PC, while PC can easily substitute both EC and DMC molecules. Our study shows that PC tends to substitute EC in the solvation shell. We have complemented our ab-initio studies by MD simulations of a Li-ion when immersed in the pure solvents and in particular solvents mixtures of interest for batteries applications, e.g. , EC:DMC (1:1) and EC:DMC:PC(1:1:3). MD is a very powerful tool and has allowed us to clarify the relevance of the cluster structures discovered by DFT when the ion is surrounded by bulk solvents. Indeed, DFT provides information about the most stable structures of isolated clusters but no information about their stability or multiplicity (entropy) when immersed in an infinite solvent environment. The MD data, together the DFT calculations have allowed us to give a very comprehensive picture of the local structure of solvent mixtures around Lithium ion, which substantially improve over previous work.
|
288 |
Nanostructured anode materials for Li-ion and Na-ion batteriesLin, Yong-Mao 16 October 2013 (has links)
The demand for electrical energy storage has increased tremendously in recent years, especially in the applications of portable electronic devices, transportation and renewable energy. The performances of lithium-ion and sodium-ion batteries depend on their electrode materials. In commercial Li-ion batteries with graphite anodes the intercalation potential of lithium in graphite is close to the reversible Li/Li⁺ half-cell potential. The proximity of the potentials can result in unintended electroplating of metallic instead of intercalation of lithium in the graphite anode and frequently leads to internal shorting and overheating, which constitute unacceptable hazards, especially when the batteries are large, as they are in cars and airplanes. Moreover, graphite cannot be readily used as the anode material of Na-ion batteries, because electroplating of metallic sodium on graphite is kinetically favored over sodium intercalation in graphite. This dissertation examines safer Li-ion and Na-ion battery anode materials. / text
|
289 |
Revealing novel degradation mechanisms in high-capacity battery materials by integrating predictive modeling with in-situ experimentsFan, Feifei 21 September 2015 (has links)
Lithium-ion (Li-ion) batteries are critically important for portable electronics, electric vehicles, and grid-level energy storage. The development of next-generation Li-ion batteries requires high-capacity electrodes with a long cycle life. However, the high capacity of Li storage is usually accompanied by large volume changes, dramatic morphological evolution, and mechanical failures in the electrodes during charge and discharge cycling. To understand the degradation of electrodes and resulting loss of capacity, this thesis aims to develop mechanistic-based models for predicting the chemo-mechanical processes of lithiation and delithiation in high-capacity electrode materials. To this end, we develop both continuum and atomistic models that simulate mass transport, interface reaction, phase and microstructural evolution, stress generation and damage accumulation through crack or void formation in the electrodes. The modeling studies are tightly coupled with in-situ transmission electron microscopy (TEM) experiments to gain unprecedented mechanistic insights into electrochemically-driven structural evolution and damage processes in high-capacity electrodes. Our models are successfully applied to the study of the two-phase lithiation and associated stress generation in both crystalline and amorphous silicon anodes, which have the highest known theoretical charge capacity, as well as the lithiation/sodiation-induced structural changes and mechanical failures in silicon-based multilayer electrodes. The modeling studies have uncovered unexpected electrochemical reaction mechanisms and revealed novel failure modes in silicon-based nanostructured anodes. Our modeling research provides insights into how to mitigate electrode degradation and enhance capacity retention in Li-ion batteries. More broadly, our work has implications for the design of nanostructured electrodes in next-generation energy storage systems.
|
290 |
Low temperature Li-ion battery ageing / Lågtemperaturåldring av Li-jon batterierNilsson, Johan Fredrik January 2014 (has links)
Different kinds of batteries suit different applications, and consequently several different chemistries exist. In order to better understand the limitations of low temperature performance, a Li-ion battery chemistry normally intended for room temperature use, graphite-Lithium Iron Phosphate, with 1 M LiPF6 ethylene carbonate:diethylene carbonate electrolyte, is here put under testing at -10°C and compared with room temperature cycling performance. Understanding the temperature limitations of this battery chemistry will give better understanding of the desired properties of a substitute using alternative materials. The experimental studies have comprised a combination of battery cycle testing, and surface analysis of the electrodes by Scanning Electron Microscopy and X-Ray Photoelectron Spectroscopy. Results showed that with low enough rate, temperature is less of a problem, but with increased charge rate, there are increasingly severe effects on performance at low temperatures. XPS measurements of low charge rate samples showed similar Solid Electrolyte Interface layers formed on the graphite anode for room- and low temperature batteries, but with indications of a thicker layer on the former. A section of the report handles specific low temperature battery chemistries. The conclusions- and outlook were made by comparing the results found in the study with earlier findings on low temperature Li-ion batteries and present possible approaches for modifying battery performance at lowered temperatures. / I detta projekt har litium-jon-batterier testats i avseende på sina lågtemperaturprestanda. Arbetet gjordes genom att testa och jämföra prestantda mellan prover vid -10°C och rumstemperaturprover. Med analytiska instrument studerades både den morfologiska och kemiska förändring som skett under användning. Vald batterikemi har varit av slaget grafit-litiumjärnfosfat med en typisk organisk elektrolyt. Denna batterikemi är inte på något sätt anpassad för lågtemperaturprestanda och med det hoppas kunna påvisas de effekter som en mer lämpligt lågtemperaturkemi åtgärdar, och förstå hur de gör det. Med låg temperatur uppkommer en större ’tröghet’ för de kemiska reaktioner som sker i ett batteri. Om designen inte är särskilt gjord för låg temperatur kan effekterna bli osäkra, rent av farliga. Risken ökar nämligen för plätering av metalliskt litium på den negativa elektroden, och skulle litiumdeponeringen växa i den riktning som kopplar samman batteriets poler så kortsluts systemet. Med den höga energidensitet som karaktäriserar litium-jon-batterier vore en kortslutning extra beklaglig då den organiska elektrolyten kan antändas, med en potentiell explosion som följd.Inom särskilda applikationer kan lågtemperaturmiljöer förväntas för ett batteri, till exempel för fordon. En elbil i skandinaviskt klimat skulle behöva fungera ohindrat även vintertid, då temperaturerna ofta når -10°C och lägre. Samtidigt får man påminnas om att litium-jon-batterierna är relativt moderna och ännu inte har fått något stort genomslag som framdrivningsmedel. Detta försätter bilindustrin i ett krafigt behov av omfattande forskning för att kunna ta strategiskt sunda beslut för att möjliggöra en ordentlig introducering av elbilar som trovärdig ersättare till de fossilt drivna bilarna. I linje med trenden att ständigt bygga säkrare bilar måste elbilarna kunna visa upp förutsägbarhet, och med detta pålitlighet och säkerhet. I detta arbetet erhölls resultat som visade på batterifunktion även vid den sänkta temperaturen, men med gränser för hur snabbt laddningöverföring kunde ske jämfört med i rumstemperatur. Bevis för bildande av skyddsfilm på anod efter 1.5 battericykler, snarlik komposition för -10°C - och rumstemperaturbatterier – men med vissa indikationer på ett tjockare bildat lager hos den senare. Därtill gjordes jämförelser med specifika lågtemperaturselektrolyter, där en skillnad i framförallt innehåll utav etylkarbonat (mindre andel vid lågtemperaturapplikationer) uppvisar stora förbättringar i kallare klimat. En sådan provblandning gjordes och uppvisade bättre prestanda vid -10°C än rumstemperaturbatterier med standardelektrolyt. Arbetet har utförts vid Institutionen för Kemi-Ångström vid Uppsala universitet.
|
Page generated in 0.0505 seconds