• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterisation of Single Ion Tracks for use in Ion Beam Lithography

Alves, Andrew David Charles, aalves@unimelb.edu.au January 2008 (has links)
To investigate the ultimate resolution in ion beam lithography (IBL) the resist material poly(methyl methacrylate) PMMA has been modified by single ion impacts. The latent damage tracks have been etched prior to imaging and characterisation. The interest in IBL comes from a unique advantage over more traditional electron beam or optical lithography. An ion with energy of the order of 1 MeV per nucleon evenly deposits its energy over a long range in a straight latent damage path. This gives IBL the ability to create high aspect ratio structures with a resolution in the order of 10 nm. Precise ion counting into a spin coated PMMA film on top of an active substrate enabled control over the exact fluence delivered to the PMMA from homogenously irradiated areas down to separated single ion tracks. Using the homogenous areas it was possible to macroscopically measure the sensitivity of the PMMA as a function of the developing parameters. Separated single ion tracks wer e created in the PMMA using 8 MeV F, 71 MeV Cu and 88 MeV I ions. These ion tracks were etched to create voids in the PMMA film. For characterisation the tracks were imaged primarily with atomic force microscopy (AFM) and also with scanning electron microscopy (SEM). The series of studies presented here show that the sensitivity of the resist-developer combination can be tailored to allow the etching of specific single ion tracks. With the ability to etch only the damage track, and not the bulk material, one may experimentally characterise the damage track of any chosen ion. This offers the scientific community a useful tool in the study and fabrication of etched ion tracks. Finally work has been conducted to allow the precise locating of an ion beam using a nanoscale mask and piezoelectrically driven scanning stage. This method of beam locating has been trailed in conjunction with single ion detection in an effort to test the practical limits of ion beam lithography in the single ion realm.
2

Heavy-Ion-Irradiation-Induced Disorder in Indium Phosphide and Selected Compounds

Khalil, Ali Saied, askhalil2004@yahoo.com January 2007 (has links)
Indium phosphide (InP) is an important III-V compound, with a variety of applications, for example, in light emitting diodes (LED), InP based photonic crystals and in semiconductor lasers, heterojunction bipolar transistors in integrated circuit applications and in transistors for microwave and millimeter-wave systems. The optical and electrical properties of this compound can be further tailored by ion implantation or prospectively by swift heavy ion beams. ¶ Thus knowledge of ion-induced disorder in this material is of important fundamental and practical interest. However, the disorder produced during heavy ion irradiation and the subsequent damage accumulation and recovery in InP is far from being completely understood. In terms of the damage accumulation mechanisms, the conclusions drawn in the numerous studies performed have often been in conflict with one another. A factor contributing to the uncertainties associated with these conflicting results is a lack of information and direct observation of the “building blocks” leading to the ultimate damage created at high ion fluences as an amorphous layer. These building blocks formed at lower fluence regimes by single ion impacts can be directly observed as isolated disordered zones and ion tracks for low energy and swift heavy ion irradiation, respectively. ¶ The primary aim of this work has thus been to obtain a better understanding of the disorder in this material through direct observations and investigation of disorder produced by individual heavy ions in both energy regimes (i.e. elastic and inelastic energy deposition regimes) especially with low ion fluence irradiations. In this thesis the heavy ion induced disorder introduced by low energy Au ions (100 keV Au+) and high energy Au (200 MeV Au+16) ion irradiation in InP were investigated using Transmission Electron Microscopy (TEM), Rutherford Backscattering Spectrometry (RBS/C) and Atomic Force Microscopy (AFM). ¶ The accumulation of damage due to disordered zones and ion tracks is described and discussed for both low energy and swift ion irradiation respectively. ¶ The in-situ TEM annealing of disordered zones created by 100 keV Au+ ion irradiation shows that these zones are sensitive to electron beam irradiation and anneal under electron energies not sufficient to elastically displace lattice atoms, i.e. subthreshold energies for both constituent atoms In and P. ¶ Ion tracks due to swift heavy ion irradiation were observed in this material and the interesting track morphology was described and discussed. The surface nanotopographical changes due to increasing fluence of swift heavy ions were observed by AFM where the onset of large increase in surface roughness for fluences sufficient to cause complete surface amorphization was observed. ¶ In addition to InP, the principle material of this project, a limited amount of TEM observation work has been performed on several other important compounds (apatite and monazite) irradiated by 200 MeV Au+ ions for comparative purposes. Again the observed segmental morphology of ion tracks were shown and possible track formation scenario and structure were discussed and similarities were drawn to the previously observed C60 cluster ion tracks in CaF2 as more knowledge and data base exist about defect dynamics and formation in that material.
3

Estudos de "annealing" de traços de íons e traços de fissão em muscovita / Annealing studies of ion tracks and fission tracks in muscovite

Lixandrão Filho, Arnaldo Luis, 1983- 31 August 2018 (has links)
Orientador: Sandro Guedes de Oliveira / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-31T19:22:36Z (GMT). No. of bitstreams: 1 LixandraoFilho_ArnaldoLuis_M.pdf: 11489211 bytes, checksum: 0e5e2fdcd3551b722c60d418964284ee (MD5) Previous issue date: 2016 / Resumo: O trabalho consistiu em estudar a muscovita como termocronômetro. Por ter pequena quantidade de urânio, abaixo de 5 partes por milhão, a utilização direta é inviável. Dessa forma, irradiamos placas de muscovita com íons de $^{238}U$ moderados por folhas de alumínio (resultando em diferentes energias) e com diferentes ângulos de incidência, com a finalidade de analisar o comportamento da muscovita com traços de íons e também para que esses íons criassem canais com o objetivo de revelar maior quantidade de traços fósseis. Realizamos planejamento utilizando algorítimo D-ótimo para realizar tratamentos térmicos com diferentes tempos e temperaturas, a fim de obter dados de ''annealing'' para a muscovita. Medimos o comprimento dos traços de íons projetados com as seguintes dependências: massa do íon, tempo de ''annealing'', temperatura de ''annealing'', energia de incidência e ângulo de incidência. Os parâmetros energia de incidência, ângulo de incidência e características do íon, não são considerados em nenhum dos modelos disponíveis na literatura. Assim sendo, formulamos um novo modelo empírico para a cinética de ''annealing'': $l = l_0 + a*energia - e^{\left(\frac{temperatura}{b + c*log(tempo)}\right)}$, $l$ sendo comprimento do traço com ''annealing'' e $l_0$ o comprimento sem ''annealing'' e, as constantes $a$, $b$ e $c$ ajustadas a partir dos dados experimentais. As constantes $a$ e $L_0$ são as variáveis relativas ao ângulo de incidência, tipo do íon e energia. Este modelo, além de ter um número menor de parâmetros, com uma simples modificação, $\frac{L}{L_0} = 1 + A.e^{\frac{T}{b}},\ b = B+C.ln(t)$, pode ser aplicado também para traços de fissão confinados. Nesse caso são apenas 3 parâmetros, $A$, $B$ e $C$ e o modelo ajustado possibilita a análise térmica em qualquer mineral que possuir dados experimentais. Neste trabalho mostramos o ajuste para os seguintes minerais: apatita, zircão, epídoto e muscovita. A partir dos traços de íons que sofreram ''annealing'' conseguimos ajustar parâmetros e obtivemos resultados consistentes com trabalhos anteriores. Um deles foi a previsão de \citeauthor{Bigazzi1967} que, possivelmente, utilizou amostras de superfície à 303K. Com esse resultado, validamos que traços de íons podem gerar bons resultados no estudo de ''annealing'' em laboratório e em tempos geológicos. Por fim, desenvolvemos um aplicativo que contempla: o ajuste dos parâmetros do modelo aos dados experimentais de modo automático, a obtenção de índices térmicos (temperatura de fechamento e zona de ''annealing parcial'') independente do mineral e a reconstrução de histórias térmicas para múltiplos minerais a partir de vínculos geológicos, da idade e de uma lista de comprimento de traços confinados. Além dessas características, a inédita ferramenta utiliza interface ''web'' que pode ser utilizada em qualquer plataforma e sistema operacional. Por fim, os resultados significativos foram: novos dados de ''annealing'' de traços de íons em mica muscovita, novo modelo empírico para abordar a cinética do ''annealing'' para traços de íons ou fissão e um aplicativo para tratamento de dados, ajuste, obtenção de índices térmicos e histórias térmicas / Abstract: In this work we studied muscovite as a thermocronometer. Muscovite have low amount of uranium, below 5 parts per million. Because of that it is impractical to be used as thermocronometer. Thus irradiating it with swift heavy ions of $ ^ {238} U $, moderated by aluminum foil (resulting in different energies) and with different angles of incidence is one way to analyze the behavior of muscovite ion tracks. These tracks can act like channels to the acid, chemical etching, revealing more fossil traces. We carry out experimental planning using D-optimal algorithm do thermal treatments at different times and temperatures in order anneal muscovite tracks. We measured the length of the ion tracks created with the following dependencies: ion mass, annealing time and temperature, impact energy and angle of incidence. The incidence of energy parameters, angle of incidence and ion characteristics are not considered in any of the models available in the literature. Therefore, we have developed a new empirical model for the kinetics of annealing: $l = l_0 + a*energia - e^{\left(\frac{temperatura}{b + c*log(tempo)}\right)}$, $l$ annealed fission track length and $l_0$ fission track length and the constants $a$, $b$ and $c$ adjusted from the experimental data . The constants $a$ and $L_0$ are related to the angle of incidence, type of ion and energy. This model, besides having fewer parameters, with a simple modification, $\frac{L}{L_0} = 1 + A.e^{\frac{T}{b}},\ b = B+C.ln(t)$ may also be applied to confined fission tracks. The adjusted model , with only 3 parameters, $A$, $B$ and $C$, enables thermal analysis in any mineral that has experimental data. We show fitting for the following minerals: apatite, zircon, epidote and muscovite. From the annealed ion tracks we fit the data to get all parameters and obtained results consistent with previous work. One was that we predict that \citeauthor{Bigazzi1967}, possibly, used surface samples with 303 K. With this result, we validate that ions tracks can generate good results using annealing laboratory data extrapolated to geological time. Finally, we developed an application with the following features: automatic model fitting to experimental data, simulation of thermal index (closure temperature and partial annealing) independent of the mineral and the reconstruction of thermal histories for multiple minerals from geological. In addition to these features, the application has web interface and can be used on any platform and operating system. Finally, the most significant results of this work were: new experimental annealing data of ion tracks in muscovite, new empirical model to increase the knowledge of the ion or fission tracks annealing kinetics and an application for data processing, fit and simulation of thermal index and thermal histories reconstruction / Mestrado / Física / Mestre em Física
4

Untersuchung des Porenöffnungsprozesses latenter Spuren leichter niederenergetischer Ionen in CR-39 mittels elektrolytischer Ätzung

Oganesyan, Vartan Rubenovitch 02 October 2005 (has links) (PDF)
Festkörperspurdetektoren (FKSD) auf der Basis von Polymermaterialien sind ein geeignetes Mittel zum Nachweis von Ionenstrahlung [1]. Ebenso können damit Neutronen über ihre sekundären Ionen gemessen werden. Als passive und integrierende Detektoren eignen sie sich insbesondere gut für die Dosimetrie, wobei die geringe bzw. fehlende Empfindlichkeit für Elektronen und Photonenstrahlung ein weiteres Argument für die Anwendungen in gemischten Strahlungsfeldern darstellt. Als passive Detektoren arbeiten FKSD ohne zusätzliche Messelektronik und Stromversorgung. Das macht sie insbesondere für die Personen- und Ortsdosimetrie interessant. Allerdings sind die latenten, submikroskopischen Ionenspuren nach der Exposition nicht unmittelbar sichtbar. Erst durch einen mehr oder weniger aufwendigen Ätzprozess werden diese lichtmikroskopisch oder für das Auge direkt sichtbar. Da bei FKSD von der Herstellung bis zur Ätzung alle Ereignisse registriert werden, handelt es sich somit auch um integrierende Detektoren.Für die Dosimetrie ist insbesondere der Nachweis von leichten Ionen bis zu spezifischen Energien von 10 MeV / Nukleon wichtig. Protonenstrahlung wird für die Radiotherapie von Geschwulstkrankheiten angewendet; die meisten leichten Ionen der Elemente Wasserstoff bis Sauerstoff sind Bestandteile der Sekundärstrahlung von Neutronen,[Alpha]-Teilchen treten häufig als Zerfallsprodukt verschiedener schwerer Radioisotope auf. Während eine große Zahl von Polymeren eine Empfindlichkeit für schwere Ionen zeigen, ist die Auswahl für leichte Ionen schon sehr eingeschränkt.[Alpha]-Teilchen können noch mit verschiedenen Polykarbonaten, Zelluloseacetat und -nitrat nachgewiesen werden. Die Registrierung von Protonen ist derzeit nur mit dem besonderen Polykarbonat CR - 39 und mit Zellulose (di/tri) nitrat möglich. Natürlich eignen sich diese Materialien auch hervorragend zur Messung von [Alpha] -Teilchen. Leichte Ionen stellen weiterhin eine wichtige Sonde in der Radiobiologie dar. Festkörperspurdetektoren können hier als Monitore für die getroffenen Zellen und Zellbestandteile dienen. Dadurch ist prinzipiell eine genaue Lokalisierung der getroffenen Zellbausteine/Organellen möglich...
5

Structural and electronic properties of swift heavy ion tracks in amorphous carbon / Strukturelle und elektronische Eigenschaften von Spuren schneller schwerer Ionen in amorphem Kohlenstoff

Schwen, Daniel 14 February 2007 (has links)
No description available.
6

Untersuchung des Porenöffnungsprozesses latenter Spuren leichter niederenergetischer Ionen in CR-39 mittels elektrolytischer Ätzung

Oganesyan, Vartan Rubenovitch 16 September 2005 (has links)
Festkörperspurdetektoren (FKSD) auf der Basis von Polymermaterialien sind ein geeignetes Mittel zum Nachweis von Ionenstrahlung [1]. Ebenso können damit Neutronen über ihre sekundären Ionen gemessen werden. Als passive und integrierende Detektoren eignen sie sich insbesondere gut für die Dosimetrie, wobei die geringe bzw. fehlende Empfindlichkeit für Elektronen und Photonenstrahlung ein weiteres Argument für die Anwendungen in gemischten Strahlungsfeldern darstellt. Als passive Detektoren arbeiten FKSD ohne zusätzliche Messelektronik und Stromversorgung. Das macht sie insbesondere für die Personen- und Ortsdosimetrie interessant. Allerdings sind die latenten, submikroskopischen Ionenspuren nach der Exposition nicht unmittelbar sichtbar. Erst durch einen mehr oder weniger aufwendigen Ätzprozess werden diese lichtmikroskopisch oder für das Auge direkt sichtbar. Da bei FKSD von der Herstellung bis zur Ätzung alle Ereignisse registriert werden, handelt es sich somit auch um integrierende Detektoren.Für die Dosimetrie ist insbesondere der Nachweis von leichten Ionen bis zu spezifischen Energien von 10 MeV / Nukleon wichtig. Protonenstrahlung wird für die Radiotherapie von Geschwulstkrankheiten angewendet; die meisten leichten Ionen der Elemente Wasserstoff bis Sauerstoff sind Bestandteile der Sekundärstrahlung von Neutronen,[Alpha]-Teilchen treten häufig als Zerfallsprodukt verschiedener schwerer Radioisotope auf. Während eine große Zahl von Polymeren eine Empfindlichkeit für schwere Ionen zeigen, ist die Auswahl für leichte Ionen schon sehr eingeschränkt.[Alpha]-Teilchen können noch mit verschiedenen Polykarbonaten, Zelluloseacetat und -nitrat nachgewiesen werden. Die Registrierung von Protonen ist derzeit nur mit dem besonderen Polykarbonat CR - 39 und mit Zellulose (di/tri) nitrat möglich. Natürlich eignen sich diese Materialien auch hervorragend zur Messung von [Alpha] -Teilchen. Leichte Ionen stellen weiterhin eine wichtige Sonde in der Radiobiologie dar. Festkörperspurdetektoren können hier als Monitore für die getroffenen Zellen und Zellbestandteile dienen. Dadurch ist prinzipiell eine genaue Lokalisierung der getroffenen Zellbausteine/Organellen möglich...

Page generated in 0.062 seconds