• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 47
  • 38
  • 9
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 259
  • 259
  • 58
  • 53
  • 53
  • 37
  • 29
  • 28
  • 25
  • 24
  • 23
  • 23
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Effects of Extrinsic and Intrinsic Proton Activity on The Mechanism of Oxygen Reduction in Ionic Liquids

January 2011 (has links)
abstract: Mechanisms for oxygen reduction are proposed for three distinct cases covering two ionic liquids of fundamentally different archetypes and almost thirty orders of magnitude of proton activity. Proton activity is treated both extrinsically by varying the concentration and intrinsically by selecting proton donors with a wide range of aqueous pKa values. The mechanism of oxygen reduction in ionic liquids is introduced by way of the protic ionic liquid (pIL) triethylammonium triflate (TEATf) which shares some similarities with aqueous acid solutions. Oxygen reduction in TEATf begins as the one electron rate limited step to form superoxide, O2*-, which is then rapidly protonated by the pIL cation forming the perhydroxyl radical, HO2*. The perhydroxyl radical is further reduced to peroxidate (HO2-) and hydrogen peroxide in proportions in accordance with their pKa. The reaction does not proceed beyond this point due to the adsorption of the conjugate base triethylammine interfering with the disproportionation of hydrogen peroxide. This work demonstrates that this mechanism is consistent across Pt, Au, Pd, and Ag electrodes. Two related sets of experiments were performed in the inherently aprotic ionic liquid 1-butyl-2,3-dimethylimidazolium triflate (C4dMImTf). The first involved the titration of acidic species of varying aqueous pKa into the IL while monitoring the extent of oxygen reduction as a function of pKa and potential on Pt and glassy carbon (GC) electrodes. These experiments confirmed the greater propensity of Pt to reduce oxygen by its immediate and abrupt transition from one electron reduction to four electron reduction, while oxygen reduction on GC gradually approaches four electron reduction as the potentials were driven more cathodic. The potential at which oxygen reduction initiates shows general agreement with the Nernst equation and the acid's tabulated aqueous pKa value, however at the extremely acidic end, a small deviation is observed. The second set of experiments in C4dMImTf solicited water as the proton donor for oxygen reduction in an approximation of the aqueous alkaline case. The water content was varied between extremely dry (<0.1 mol% H2O) and saturated (approximately 15.8 mol% H2O}). As the water content increased so too did the extent of oxygen reduction eventually approach two electrons on both Pt and GC. However, additional water led to a linear increase in the Tafel slope under enhanced mass transport conditions up to the point of 10 mol% water. This inhibition of oxygen adsorption is the result of the interaction between superoxide and water and more specifically is proposed to be associated with decomposition of theC4dMIm+ cation by hydroxide at the elevated temperatures required for the experiment. Oxygen reduction on both Pt and GC follows Nernstian behavior as the water content is increased. Separate mechanisms for oxygen reduction on Pt and GC are proposed based on the nature of the Nernstian response in these systems. / Dissertation/Thesis / Ph.D. Materials Science and Engineering 2011
72

Tuning the size and surface of InP nanocrystals by microwave-assisted ionic liquid etching

Siramdas, Raghavender January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Emily McLaurin / Semiconductors are materials whose conductivity is between metals and insulators. Semiconductor nanocrystals (NCs) have sizes in the range 2 to 10 nm. Because of their unique optical properties like tunable emission wavelength, narrow emission peak, and stability over dyes, they have potential applications in displays. Indium phosphide (InP) is considered a less toxic alternative to commercially used cadmium-based semiconductor NCs. Microwave-assisted (MA) methods using ionic liquids (ILs) afford fast reaction heating rates because of the good MW absorbing capacity of ILs. For tuning size and surface, which are some of the important problems associated with the InP NCs, new synthetic methods are reported herein. In MAIL etching HF generated in the microwave reaction etches the InP NCs surface. Pyridinium and imidazolium based ILs containing tetrafluoroborate (BF₄⁻) and hexafluorophosphate (PF₆⁻) ions yield luminescent NCs. In a silicon carbide (SiC) reaction vessel, which blocks most of the microwaves penetrating into the reaction, bigger NCs form than those from a Pyrex reaction vessel because of the higher reaction temperatures in the SiC vessel. By changing microwave set-power (SP), different reaction times can be achieved. Though a small degree of change in average NC diameter of the NCs is observed at different SPs and reaction temperatures, addition of dodecylamine (DDA) yields NCs with average sizes between 3.2 to 4.2 nm with a broad size distribution. At lower SPs smaller NCs form and at higher SPs bigger NCs form. NC luminescence can be tuned from green (545 nm) to red (630 nm) in the visible region with quantum yields as high as 30%. Rapid heating and InP precursor activation might be responsible for the larger change in NC size. The effect of DDA on NC size is also verified by microwave reactions in SiC vessels. ILs containing PF₆⁻ ions at 280 °C will modify the surface of the NCs so the NC dispersibility changes from non-polar (toluene) to polar (DMSO) as the amount of IL increases. This is due to ligand stripping, which is the removal of large palmitic ligands from the NC surface. These NCs have broad absorption features and emission peaks with QYs of up to 30%. Fourier transform infrared spectroscopy indicates the absence of palmitic acid ligands on the NC surface and zeta potential measurements indicate the presence of anions on the NC surface. From X-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy, the inorganic ion PO₂F₂⁻ is identified on the NCs surface.
73

Engineering the Electrode-Electrolyte Interface: From Electrode Architecture to Zn Redox in Ionic Liquid Electrolytes

January 2011 (has links)
abstract: The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all the processes at the interface. The following work presents different systems in which the electrode-electrolyte interface is highly important. The first is a charge storage electrode utilizing percolation theory to develop an electrode architecture producing high capacities. This is followed by Zn deposition in an ionic liquid in which the deposition morphology is highly dependant on the charge transfer and surface adsorption at the interface. Electrode Architecture: A three-dimensional manganese oxide supercapacitor electrode architecture is synthesized by leveraging percolation theory to develop a hierarchically designed tri-continuous percolated network. The three percolated phases include a faradaically-active material, electrically conductive material and pore-former templated void space. The micropores create pathways for ionic conductivity, while the nanoscale electrically conducting phase provides both bulk conductivity and local electron transfer with the electrochemically active phase. Zn Electrodeposition: Zn redox in air and water stable N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [C2nmm][NTf2] is presented. Under various conditions, characterization of overpotential, kinetics and diffusion of Zn species and morphological evolution as a function of overpotential and Zn concentration are analyzed. The surface stress evolution during Zn deposition is examined where grain size and texturing play significant rolls in compressive stress generation. Morphological repeatability in the ILs led to a novel study of purity in ionic liquids where it is found that surface adsorption of residual amine and chloride from the organic synthesis affect growth characteristics. The drivers of this work are to understand the processes occurring at the electrode-electrolyte interface and with that knowledge, engineer systems yielding optimal performance. With this in mind, the design of a bulk supercapacitor electrode architecture with excellent composite specific capacitances, as well as develop conditions producing ideal Zn deposition morphologies was completed. / Dissertation/Thesis / Ph.D. Materials Science and Engineering 2011
74

SYNTHESES OF PEG/ALKYL-BASED IMIDAZOLIUM/PYRIDINIUM IONIC LIQUIDS AND APPLICATIONS ON H2S ABSORPTION& SYNTHESES OF POLYSULFONE BASED FUNCTIONALIZED IMIDAZOLIUM IONIC POLYMERS AND APPLICATIONS ON GAS SEPARATION

Zhang, Chengda 01 December 2015 (has links)
The synthesis method for PEG/alkyl-based imidazolium/pyridinium ionic liquids was studied. Four steps were used to fabricate the membranes: polymerization, chloromethylation, linkage of the polymers with the pendent groups and membrane cast. Permeabilities and CO2/N2 selectivity of two membranes were examined and each showed remarkable CO2/N2 selectivity. CO2 permeability of the [PSM-MIM][Cl] membrane is better than that of the [PSM-MEIM][Cl] membrane, which is due to the steric hindrance of the methoxyethyl group. The syntheses of PEG/alkyl-based imidazolium/pyridinium ionic liquids (IL) were studied. PEG-based ILs were demonstrated to have better H2S solubilities than the alkyl-based ILs. H2S solubilities of the imidazolium ILs and pyridinium ILs were compared. The anion effects on H2S solubilities have been investigated, while the temperature effects on H2S solubilities will need to be studied in the near future.
75

Récupération électrochimique en milieu liquide ionique de nanoparticules de platine contenues dans les électrodes de PEMFC / Electrochemical recovery of platinum nanoparticles from PEMFC's electrodes using ionic liquids

Balva, Maxime 22 November 2017 (has links)
Les nanoparticules de platine (Pt) représentent environ la moitié du coût de fabrication des piles à combustible à membrane échangeuses de protons (PEMFC), ce qui constitue un frein à leur commercialisation à grande échelle. La récupération du Pt contenu dans les piles usagées apparaît donc nécessaire. Les voies de traitement habituellement mises en œuvre pour le recyclage de catalyseurs à base de Pt sont des procédés pyro-hydrométallurgiques, générateurs d’émissions polluantes (CO2, NO2). Une voie de traitement électrochimique en milieu liquide ionique (LI), plus respectueuse de l'environnement, est proposée ici. Elle combine dans une seule cellule la lixiviation du Pt par dissolution anodique et sa récupération par électrodéposition, dans des conditions de température "douces", sans émission de gaz nocifs. L’étude de nombreux électrolytes a permis de sélectionner les mélanges BMIMTFSI + BMIMCl (bis(trifluorométhylsulfonyl) imidure + chlorure de 1-butyl-3-méthylimidazolium), en raison du caractère complexant des chlorures facilitant la lixiviation du Pt et de la bonne stabilité électrochimique du BMIMTFSI. L’anion TFSI-, peu coordonnant, permet de moduler le caractère complexant de l’électrolyte, paramètre clé du procédé influant sur la nature et la stabilité électrochimique du complexe de Pt formé par lixiviation. Au cours de ce travail, les conditions expérimentales permettant de lixivier et d’électrodéposer le Pt dans une cellule unitaire ont été définies et appliquées avec succès aux électrodes de PEMFC. L’électrolyte sélectionné, faiblement hygroscopique, permet la récupération du Pt en atmosphère ambiante / The platinum nanoparticles used as catalyst in Proton Exchange Membrane Fuel Cells (PEMFCs) represent around the half of the total price of the cell and is one of the limitations for their large scale commercialization. The treatment of spent PEMFC through the recovery of platinum catalyst is a major concern for their development. Usual recovery routes for platinum-containing catalysts are pyro-hydrometallurgical processes that generate pollutant emissions (CO2, NO2). An electrochemical recovery route by coupling electrochemical leaching and electrodeposition in ionic liquids (ILs) is proposed here, more environmentally friendly, performed in "soft" temperature conditions and without any gases emission. Studies of several electrolytes lead us to select BMIMTFSI + BMIMCl melts (bis(trifluorométhylsulfonyl) imidure + 1-butyl-3-méthylimidazolium chloride), due to the complexing ability of chloride against platinum and the good electrochemical stability of the RMIM+ cation. TFSI-, a weakly coordinate anion, allows us to modulate the complexing ability of the electrolyte, which is a key parameter affecting the nature and the electrochemical stability of the Pt complex formed after leaching. The optimal conditions of the leaching and electrodeposition steps have been determined during this work and successfully applied to PEMFC’s electrode. The selected electrolyte, which is weakly hygroscopic, allows the Pt recovery under ambient atmosphere
76

Magnesium Battery Electrolytes in Ionic Liquids

January 2016 (has links)
abstract: A lack of adequate energy storage technologies is arguably the greatest hindrance to a modern sustainable energy infrastructure. Chemical energy storage, in the form of batteries, is an obvious solution to the problem. Unfortunately, today’s state of the art battery technologies fail to meet the desired metrics for full scale electric grid and/or electric vehicle role out. Considerable effort from scientists and engineers has gone into the pursuit of battery chemistries theoretically capable of far outperforming leading technologies like Li-ion cells. For instance, an anode of the relatively abundant and cheap metal, magnesium, would boost the specific energy by over 4.6 times that of the current Li-ion anode (LiC6). The work presented here explores the compatibility of magnesium electrolytes in TFSI–-based ionic liquids with a Mg anode (TFSI = bis(trifluoromethylsulfonyl)imide). Correlations are made between the Mg2+ speciation conditions in bulk solutions (as determined via Raman spectroscopy) and the corresponding electrochemical behavior of the electrolytes. It was found that by creating specific chelating conditions, with an appropriate Mg salt, the desired electrochemical behavior could be obtained, i.e. reversible electrodeposition and dissolution. Removal of TFSI– contact ion pairs from the Mg2+ solvation shell was found to be essential for reversible electrodeposition. Ionic liquids with polyethylene glycol chains pendent from a parent pyrrolidinium cation were synthesized and used to create the necessary complexes with Mg2+, from Mg(BH4)2, so that reversible electrodeposition from a purely ionic liquid medium was achieved. The following document discusses findings from several electrochemical experiments on magnesium electrolytes in ionic liquids. Explanations for the failure of many of these systems to produce reversible Mg electrodeposition are provided. The key characteristics of ionic liquid systems that are capable of achieving reversible Mg electrodeposition are also given. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2016
77

Surfactants, Ionic liquids and Ionosilicas : functional ionic systems for supramolecular chemistry and elaboration of materials by design (ion exchange and vectorization) / Tensio-actifs, liquides ioniques et ionosilices : systèmes ioniques fonctionnels pour la chimie supramoléculaire et l’élaboration de matériaux par design (échange ionique et vectorisation)

Bouchal, Roza 19 October 2016 (has links)
Cette thèse s’inscrit dans le cadre de synthèses de matériaux innovants contenant des entités cationiques que sont le guanidinium et l’ammonium. Ces entités cationiques confèrent des propriétés intéressantes et fonctionnelles pour chacun des systèmes ioniques suivants : tensio-actifs, liquides ioniques et ionosilices. A cet effet, nous avons procédé à l’étude de deux familles de composés : les sels de guanidiniums et les ionosilices. Pour les sels de guanidiniums, nous avons étudié la formation et les propriétés d’auto-assemblage de tensio-actifs en utilisant différentes techniques de mesures (conductivité, tension de surface et calorimétrie). Ce remarquable synthon moléculaire qu’est le guanidinium a été aussi mis en avant comme liquide ionique pour l’extraction du méthyl orange, du diclofenac et du chromate. Quant aux ionosilices, bien qu’ils présentent aussi des propriétés intéressantes pour l’extraction ionique et l’adsorption de principes actifs, leur mise en forme reste cependant un paramètre clef pour cibler leur application. En effet, la mise en forme des ionosilices en nanoparticules permet l’extension des applications dans le domaine de la nanomedecine. Ainsi, durant cette thèse, des nanoparticules avec des sous-structures ioniques ammoniums sont synthétisées pour la première fois et utilisées comme nano-vecteur pour le relarguage d’un anti-inflammatoire (diclofenac). Par ailleurs, dans le but d’une extraction ionique en flux continu, des matériaux contenant des fonctions ioniques sous forme de monolithe ont été synthétisés à partir de précurseur ammonium par voie sol gel. Ainsi cette thèse nous a permis de trouver les éléments théoriques, illustratifs et expérimentaux des différentes facettes de la formation de matières à base d’unités cationiques aux propriétés remarquables que sont les sels de guanidiniums et les sels d’ammoniums. / This dissertation deals with innovative synthetic materials bearing cationic entities that are guanidinium and ammonium. These cationic entities give interesting and functional properties for each ionic system studied: surfactant, ionic liquid and ionosilica. For this purpose, we investigated two families groups composed of: guanidiniums salts and ionosilica. Regarding guanidiniums salts, we studied the formation and self-assembly behavior of guanidinium surfactants using different measurement techniques (conductivity, surface tension and calorimetry). This remarkable molecular synthon that represents guanidinium was also highlighted as an ionic liquid for the extraction of methyl orange, diclofenac and chromate. As for ionosilicas, although they also have advantageous properties for ion extraction and adsorption of the active ingredients, however their shaping remains a key parameter for targeting their application. In fact, the design of ionosilica material as nanoparticle allows applications extension in the field of nanomedicine. So during this thesis, nanoparticles containing ammonium substructures were synthesized for the first time and used as a nano-vector to deliver an anti-inflammatory drug (diclofenac). Furthermore, with the aim of ionic extraction in continuous flow, materials containing ionic functions as monolith were synthesized from ammonium precursor via sol gel route. This thesis allowed us to find the theoretical, experimental and illustrative elements of the different aspects of materials formation based on cationic entities with remarkable properties that are guanidiniums and ammonium salts.
78

Novo modelo de coeficiente de atividade : F-SAC

Gerber, Renan Pereira January 2012 (has links)
Atualmente, pelo menos para fins de engenharia, os modelos preditivos de maior sucesso para coeficientes de atividade são os baseados em grupos funcionais, tais como UNIFAC e suas variantes. Enquanto esses modelos requerem grandes quantidades de dados experimentais, os baseados em COSMO-RS (COnductor-like Screening MOdel - for Real Solvents) requerem a calibração de um pequeno conjunto de parâmetros universais. No entanto, a precisão requerida por tarefas de engenharia, tais como a otimização de sistemas de separação, é maior do que a obtida por esta última categoria de modelos. Assim, um novo modelo é proposto neste trabalho, aqui chamado de F-SAC (Functional-Segment Activity Coefficient). Este novo modelo também é baseado no conceito de grupos funcionais, mas a energia de interação entre os grupos vem da teoria COSMO-RS. No presente trabalho, foram consideradas apenas misturas em que não há formação de ligação de hidrogênio ou quando esta pôde ser assumida negligenciável. Assim, foram necessários apenas três parâmetros para descrever cada grupo funcional. A princípio, uma vez ajustados os parâmetros de cada grupo, estes funcionariam para descrever a interação para qualquer par de grupos. Esta é a principal vantagem do modelo proposto. O número de parâmetros do modelo cresce proporcionalmente ao número de grupos funcionais, enquanto que no UNIFAC o número de parâmetros de interação cresce proporcionalmente ao quadrado do número de grupos. Para o banco de dados experimentais de coeficientes de atividade em diluição infinita considerado, a correlação do F-SAC apresentou um erro médio absoluto de 0,07 unidades de ln, enquanto que os modelos UNIFAC (Do) e COSMO-SAC apresentaram, respectivamente, erros de 0,12 e 0,21. O F-SAC foi também avaliado para mais de 1000 misturas binárias de um soluto dissolvido em líquido iônico com dados disponíveis na literatura. O modelo apresentou uma boa correlação aos dados experimentais, com erro médio absoluto de 0,17 unidades de ln, similar ao apresentado pelas misturas orgânicas. O poder de predição do novo modelo foi avaliado utilizando dados de equilíbrio líquido-vapor não considerados no procedimento de ajuste do modelo. Uma ótima concordância com os dados experimentais foi possível em toda a faixa de composição, bem como na predição de azeótropos. Esses resultados demonstram o potencial do modelo proposto. / At present, at least for engineering purposes, the most successful predictive models for activity coefficients are those based on functional groups, such as UNIFAC and its variants. While these models require large amounts of experimental data, the ones based on COSMO-RS require the calibration of a small set of universal parameters. However, the resolution required by engineering tasks, such as the optimization of separation systems, is higher than that obtained by COSMO-RS models. Thus, in this work a novel Functional-Segment Activity Coefficient (F-SAC) model is proposed. This new model is also based on the concept of functional groups, but the interaction energy between groups comes from the COSMO-RS theory. In this study, we considered only mixtures where there is no formation of hydrogen bonds or when they could be assumed negligible. Then, only three parameters were required to describe each functional group. In principle, once the parameters for each functional group are properly calibrated, they should work to describe the interactions with any other group. This is the main advantage of the proposed model, the number of model parameters grows linearly with the number of functional groups, whereas in UNIFAC the number of interaction parameters exhibit quadratic growth with respect to the number of groups. For the experimental database of infinite dilution activity coefficients considered, the correlation of F-SAC have shown a mean absolute error of 0.07 ln-unit. The UNIFAC (Do) and COSMO-SAC models presented errors of 0.12 and 0.21, respectively. F-SAC was also evaluated for more than 1000 binary mixtures of solute in ionic liquid with data available in the literature. Again, the model have shown good correlation to the experimental data, with mean absolute error of 0.17 ln-unit, similar to the performance with the organic mixtures. The predictive strength of the model was assessed by using vaporliquid equilibrium data not considered in the model fitting process. Very good agreement with experimental data was possible over the entire composition range, as well as in the prediction of azeotropes. These results demonstrate the potential of the proposed method.
79

Novel Anhydrous Superprotonic Ionic Liquids and Membranes for Application in Mid-temperature Fuel Cells

January 2013 (has links)
abstract: This thesis studies three different types of anhydrous proton conducting electrolytes for use in fuel cells. The proton energy level scheme is used to make the first electrolyte which is a rubbery polymer in which the conductivity reaches values typical of activated Nafion, even though it is completely anhydrous. The protons are introduced into a cross-linked polyphospazene rubber by the superacid HOTf, which is absorbed by partial protonation of the backbone nitrogens. The decoupling of conductivity from segmental relaxation times assessed by comparison with conductivity relaxation times amounts to some 10 orders of magnitude, but it cannot be concluded whether it is purely protonic or due equally to a mobile OTf- or H(OTf)2-; component. The second electrolyte is built on the success of phosphoric acid as a fuel cell electrolyte, by designing a variant of the molecular acid that has increased temperature range without sacrifice of high temperature conductivity or open circuit voltage. The success is achieved by introduction of a hybrid component, based on silicon coordination of phosphate groups, which prevents decomposition or water loss to 250ºC, while enhancing free proton motion. Conductivity studies are reported to 285ºC and full H2/O2 cell polarization curves to 226ºC. The current efficiency reported here (current density per unit of fuel supplied per sec) is the highest on record. A power density of 184 (mW.cm-2) is achieved at 226ºC with hydrogen flow rate of 4.1 ml/minute. The third electrolyte is a novel type of ionic liquids which is made by addition of a super strong Brønsted acid to a super weak Brønsted base. Here it is shown that by allowing the proton of transient HAlCl4, to relocate on a very weak base that is also stable to superacids, we can create an anhydrous ionic liquid, itself a superacid, in which the proton is so loosely bound that at least 50% of the electrical conductivity is due to the motion of free protons. The protic ionic liquids (PILs) described, pentafluoropyridinium tetrachloroaluminate and 5-chloro-2,4,6-trifluoropyrimidinium tetrachloroaluminate, might be the forerunner of a class of materials in which the proton plasma state can be approached. / Dissertation/Thesis / Ph.D. Chemistry 2013
80

Self-Assembly at Ionic Liquid-Based Interfaces: Fundamentals and Applications

January 2013 (has links)
abstract: Liquid-liquid interfaces serve as ideal 2-D templates on which solid particles can self-assemble into various structures. These self-assembly processes are important in fabrication of micron-sized devices and emulsion formulation. At oil/water interfaces, these structures can range from close-packed aggregates to ordered lattices. By incorporating an ionic liquid (IL) at the interface, new self-assembly phenomena emerge. ILs are ionic compounds that are liquid at room temperature (essentially molten salts at ambient conditions) that have remarkable properties such as negligible volatility and high chemical stability and can be optimized for nearly any application. The nature of IL-fluid interfaces has not yet been studied in depth. Consequently, the corresponding self-assembly phenomena have not yet been explored. We demonstrate how the unique molecular nature of ILs allows for new self-assembly phenomena to take place at their interfaces. These phenomena include droplet bridging (the self-assembly of both particles and emulsion droplets), spontaneous particle transport through the liquid-liquid interface, and various gelation behaviors. In droplet bridging, self-assembled monolayers of particles effectively "glue" emulsion droplets to one another, allowing the droplets to self-assembly into large networks. With particle transport, it is experimentally demonstrated the ILs overcome the strong adhesive nature of the liquid-liquid interface and extract solid particles from the bulk phase without the aid of external forces. These phenomena are quantified and corresponding mechanisms are proposed. The experimental investigations are supported by molecular dynamics (MD) simulations, which allow for a molecular view of the self-assembly process. In particular, we show that particle self-assembly depends primarily on the surface chemistry of the particles and the non-IL fluid at the interface. Free energy calculations show that the attractive forces between nanoparticles and the liquid-liquid interface are unusually long-ranged, due to capillary waves. Furthermore, IL cations can exhibit molecular ordering at the IL-oil interface, resulting in a slight residual charge at this interface. We also explore the transient IL-IL interface, revealing molecular interactions responsible for the unusually slow mixing dynamics between two ILs. This dissertation, therefore, contributes to both experimental and theoretical understanding of particle self-assembly at IL based interfaces. / Dissertation/Thesis / Ph.D. Chemical Engineering 2013

Page generated in 0.0489 seconds