Spelling suggestions: "subject:"[een] LARGE CONSUMERS"" "subject:"[enn] LARGE CONSUMERS""
1 |
[en] SIMULATION AND STOCHASTIC OPTIMIZATION FOR ENERGY CONTRACTING OF LARGE CONSUMERS / [pt] SIMULAÇÃO E OTIMIZAÇÃO ESTOCÁSTICA PARA CONTRATAÇÃO DE ENERGIA ELÉTRICA DE GRANDES CONSUMIDORESEIDY MARIANNE MATIAS BITTENCOURT 09 November 2016 (has links)
[pt] A contratação de energia elétrica no Brasil por parte de grandes
consumidores é feita de acordo com o nível de tensão e considerando dois
ambientes: o Ambiente Regulado e o Ambiente Livre. Os grandes consumidores
são aqueles que possuem carga igual ou superior a 3 MW, atendidos em qualquer
nível de tensão e a energia pode ser contratada em quaisquer desses ambientes.
Um grande desafio para esses consumidores é determinar a melhor alternativa de
contratação. Para tratar este problema, é preciso ter em conta que o consumo de
energia e a demanda de potência requerida são variáveis desconhecidas no
momento da contratação do consumidor, sendo necessário estimá-las. Esta
dissertação propõe atacar este problema por uma metodologia que envolve
simulação de cenários futuros de demanda máxima de potência e energia total
consumida e otimização estocástica dos cenários simulados para definir o melhor
contrato. Dada a natureza estocástica do problema, empregou-se o CVaR
(Conditional Value at Risk) como medida de risco para o problema de otimização.
Para ilustrar, os resultados da contratação foram obtidos para um grande
consumidor real considerando a modalidade Verde A4 no Ambiente Regulado e
um contrato de quantidade no Ambiente Livre. / [en] The energy contracting in Brazil for large consumers is done according to
the voltage level and considering two environments: the Regulated Environment
and the Free Environment. Large consumers are those characterized by installed
load equal to or greater than 3 MW, supplied at any voltage level and its energy
contract can be chosen between any of these two environments. A major challenge
for these consumers is to determine the best alternative of contracting. To address
this problem, it must be taken into account that the energy consumption and the
required power demand are unknown variables by the time of consumer
contracting, being necessary to estimate them. This dissertation proposes to tackle
this problem by a methodology based on the simulation of future scenarios of
maximum power demand and total consumed energy and on stochastic
optimization of these simulated scenarios in order to define the best contract.
Given the stochastic nature of the problem, it was used the CVaR (Conditional
Value at Risk) as a measure of risk for the optimization problem. To illustrate, the
contracting results were obtained for a large real consumer considering the Green
Tariff group A4 in the Regulated Environment and a quantity contract in the Free
Environment.
|
2 |
[en] STOCHASTIC ANALYSIS OF ECONOMIC VIABILITY OF PHOTOVOLTAIC PANELS INSTALLATION IN LARGE CONSUMERS / [pt] ANÁLISE ESTOCÁSTICA DA VIABILIDADE ECONÔMICA DA INSTALAÇÃO DE PAINÉIS FOTOVOLTAICOS EM GRANDES CONSUMIDORESANDRES MAURICIO CESPEDES GARAVITO 25 May 2018 (has links)
[pt] A geração distribuída (GD) vem crescendo nos últimos anos no Brasil, particularmente a geração fotovoltaica, permitindo a pequenos e grandes consumidores ter um papel ativo no sistema elétrico, podendo investir em um sistema próprio de geração. Para os consumidores cativos, além da redução do custo de energia, o consumidor também pode ter uma redução no custo de demanda, que é calculado a partir de um contrato com a distribuidora que o atende. Assim, considerando a possibilidade de instalação de painéis fotovoltaicos, o desafio dos consumidores é estimar com maior acurácia possível sua energia, a energia gerada pelos painéis e as demandas máximas futuras de forma a determinar a quantidade ótima de painéis, bem como o contrato de demanda com a distribuidora. Nesta dissertação, propõe-se resolver este problema a partir da simulação de cenários futuros de consumo de energia, demanda máxima e correlacionando-os com cenários futuros de geração de energia. Em seguida, a partir de um modelo de otimização linear inteiro misto, calcula-se a quantidade ótima de painéis fotovoltaicos e a demanda a ser contratada. Na primeira parte da dissertação, a modelagem Box e Jenkins é utilizada para estimar os parâmetros do modelo estatístico de energia consumida e demanda combinados com a geração de energia dos painéis. Na segunda parte, é utilizado um modelo de otimização estocástica que utiliza uma combinação convexa de Valor Esperado (VE) e Conditional Value-at-Risk (CVaR) como métricas de risco para avaliar o número ótimo de painéis e a melhor contratação de demanda. Para ilustrar a abordagem proposta, é apresentado um caso de estudo real para um grande consumidor considerado na modalidade Verde A4 no Ambiente de Contratação Regulado. Os resultados obtidos mostraram que a utilização de painéis fotovoltaicos em um grande consumidor reduzem o custo anual de energia em até 20 por cento, comparado com o valor real faturado. / [en] Distributed Generation (GD) is growing up in the last years in Brazil, particularly photovoltaic generation, allowing small and large consumers play an important role in the electric system, investing in a own generation system. For the regulated consumers, besides the reduction of energy cost, they also may have a reduction in demand cost, which is computed from peak demand contract with the supply utility company. Therefore, taking into account the possibility of photovoltaic panels installation, the challenge of consumers is estimate with highest accuracy as possible its energy, the energy generation by the panels, and the future peak demand in order to estimate the optimum quantity of panels, as well as the peak demand contract with the utility. A way to solve this problem is to simulate future scenarios of energy consumption, peak demand, and correlate them with future scenarios of energy generation. After that, from a mixed integer linear stochastic optimization model, the optimum quantity of panels and peak demand to be contracted are computed. In the first part, the Box and Jenkins modelling is used to estimate the parameters of the energy consumption and peak demand by statistical model, combined with the energy generation of the panels. In the second part, a stochastic optimization model is applied using a convex combination of the Expected Value (VE) and Conditional Value-at-Risk (CVaR), which were used as risk metrics to rate the optimum number of panels and the best peak demand contract. To illustrate the proposed approach, a real case study of a large consumer presented considering the Green Tariff group A4 in the Regulated Environment. The results show that to use photovoltaic panels can reduce the annual cost by up to 20 per cent, compared with the billed real value.
|
3 |
[pt] ANÁLISE ESTOCÁSTICA DA CONTRATAÇÃO DE ENERGIA ELÉTRICA DE GRANDES CONSUMIDORES NO AMBIENTE DE CONTRATAÇÃO LIVRE CONSIDERANDO CENÁRIOS CORRELACIONADOS DE PREÇOS DE CURTO PRAZO, ENERGIA E DEMANDA / [en] STOCHASTIC ANALYSIS OF ENERGY CONTRACTING IN THE FREE CONTRACT ENVIRONMENT FOR BIG CONSUMERS CONSIDERING CORRELATED SCENARIOS OF SPOT PRICES, ENERGY AND POWER DEMANDDANIEL NIEMEYER TEIXEIRA PAULA 27 October 2020 (has links)
[pt] No Brasil, grandes consumidores podem estabelecer seus contratos de energia elétrica em dois ambientes: Ambiente de Contratação Regulado e Ambiente de Contratação Livre. Grandes consumidores são aqueles que possuem carga igual ou superior a 2 MW e podem ser atendidos sob contratos firmados em quaisquer um desses ambientes. Já os consumidores com demanda contratada inferior a 2 MW e superior a 500 kW podem ter seu contrato de energia estabelecido no Ambiente de Contratação Livre proveniente de geração de energia renovável ou no Ambiente de Contratação Regulada através das distribuidoras de energia. A principal vantagem do Ambiente de Contratação Livre é a possibilidade de negociar contratos com diferentes parâmetros, como, por exemplo, preço, quantidade de energia e prazo. Eventuais diferenças entre a energia contratada e a consumida, são liquidadas ao preço de energia de curto prazo, que pode ser bastante volátil.Neste caso o desafio é estabelecer uma estratégia de contratação que minimize os riscos associados a este ambiente. Esta dissertação propõe uma metodologia que envolve a simulação estatística de cenários correlacionados de energia, demanda máxima e preço de curto prazo (também chamado de PLD – Preço de Liquidação das Diferenças) para serem inseridos em um modelo matemático de otimização estocástica, que define os parâmetros ótimos da contratação de energia e demanda. Na parte estatística, um modelo Box e Jenkins é usado para estimar os parâmetros das séries históricas de energia e demanda máxima com o objetivo de simular cenários correlacionados com o PLD. Na parte de otimização, emprega-se uma combinação convexa entre Valor Esperado (VE) e Conditional Value-at-Risk (CVaR) como medidas de risco para encontrar os valores ótimos dos parâmetros contratuais, como a demanda máxima contratada, o volume mensal de energia a ser contratado, além das flexibilidades inferior e superior da energia contratada. Para ilustrar a abordagem proposta, essa metodologia é aplicada a um estudo de caso real para um grande consumidor no Ambiente de Contratação Livre. Os resultados indicaram que a metodologia proposta pode ser uma ferramenta eficiente para consumidores no Ambiente de Contratação Livre e, dado à natureza do modelo, pode ser generalizado para diferentes contratos e mercados de energia. / [en] In Brazil, big consumers can choose their energy contract between two different energy environments: Regulated Contract Environment and Free Contract Environment. Big consumers are characterized by installed load capacity equal or greater than 2 MW and can firm an energy contract under any of these environments. For those consumers with installed load lower than 2 MW and higher than 500 kW, their energy contracts can be firmed in the Free Contract Environment using renewable energy generation or in the Regulated Contract Environment by local distribution companies. The main advantage of the Free Market Environment is the possibility of negotiating contracts with different parameters such as, for example, price, energy quantity and deadlines. Possible differences between contracted energy and consumed energy are settled by the spot price, which can be rather volatile.
In this case, the challenge is to establish a contracting strategy that minimize the associated risks with this environment. This thesis proposes a methodology that involves statistical simulation of correlated energy, peak demand and Spot Price scenarios to be used in a stochastic optimization model that defines the optimal energy and demand contract parameters. In the statistical part, a Box and Jenkins model is used to estimate parameters for energy and peak demand in order to simulate scenarios correlated with Spot Price. In the optimization part, a convex combination of Expected Value (EV) and Conditional Value-at-Risk (CVaR) is used as risk measures to find the optimal contract parameters, such as the contracted peak demand, the seasonal energy contracted volumes, in addition to the upper and lower energy contracted bound. To illustrate this approach, this methodology is
applied in a real case study for a big consumer with an active Free Market Environment contract. The results indicate that the proposed methodology can be a efficient tool for consumers in the Free Contract Environment and, due to the nature of the model, it can be generalized for different energy contracts and markets.
|
Page generated in 0.0501 seconds