Spelling suggestions: "subject:"[een] LARGE EDDY SIMULATION - LES"" "subject:"[enn] LARGE EDDY SIMULATION - LES""
1 |
Numerical simulation of flow in open-channels with hydraulic structuresKara, Sibel 21 September 2015 (has links)
Extreme hydrological events associated with global warming are likely to produce an increasing number of flooding scenarios resulting in significant bridge inundation and associated damages. During large floods, the presence of a bridge in an open channel triggers a highly turbulent flow field including 3D complex coherent structures around bridge structures. These turbulence structures are highly energetic and possess high sediment entrainment capacity which increases scouring around the bridge foundation and consequently lead to structural stability problems or even failure of the structure. Hence, understanding the complex turbulent flow field for these extreme flow conditions is crucial to estimate the failure risks for existing bridges and better design of future bridges.
This research employs the method Large Eddy Simulation (LES) to predict accurately the 3D turbulent flow around bridge structures. The LES code is refined with a novel free surface algorithm based on the Level Set Method (LSM) to determine the complex water surface profiles. The code is used to analyze the hydrodynamics of compound channel flow with deep and shallow overbanks, free flow around a bridge abutment, pressure flow with a partially submerged bridge deck and bridge overtopping flow. All simulations are validated with data from complementary physical model tests under analogous geometrical and flow conditions. Primary velocity, bed shear stress, turbulence characteristics and 3D coherent flow structures are examined thoroughly for each of the flow cases to explain the hydrodynamics of these complex turbulent flows.
|
2 |
A Filtered-Laminar-Flame PDF subgrid scale closure for LES of Premixed Turbulent Flames : Application to a Stratified Bluff-body burner with Differential DiffusionNambully, Suresh Kumar 18 March 2013 (has links) (PDF)
A sub-grid scale closure for Large Eddy Simulation (LES) of turbulent combustion, based on physical space filtering of laminar flames is presented. The proposed formalism relies on a presumed probability density function (PDF) derived from the filtered laminar flames and flamelet tabulated chemistry. The combustion LES filter size is not fixed in this novel approach when sub-grid scale wrinkling occurs, but calibrated depending on the local level of unresolved scalar fluctuations. The model was validated by simulating 1D filtered laminar flames and 2D Bunsen flames. Subsequently, the model was tested on a 3D turbulent scenario by performing LES of the premixed and stratified configurations of the Cambridge swirl burner, experimentally studied by Sweeney and co-workers. Comparison of simulation and experiments for both the premixed and stratified configurations showed good agreement emphasizing the model characteristiscs. Instantaneous and time averaged LES data were analyzed to extract
|
3 |
Large eddy simulation of buoyant plumesWorthy, Jude January 2003 (has links)
A 3D parallel CFD code is written to investigate the characteristics of and differences between Large Eddy Simulation (LES) models in the context of simulating a thermal buoyant plume. An efficient multigrid scheme is incorporated to solve the Poisson equation, resulting from the fractional step, projection method used to solve the Low Mach Number (LMN) Navier-Stokes equations. A wide range of LES models are implemented, including a variety of eddy models, structure models, mixed models and dynamic models, for both the momentum stresses and the temperature fluxes. Generalised gradient flux models are adapted from their RANS counterparts, and also tested. A number of characteristics are observed in the LES models relating to the thermal plume simulation in particular and turbulence in general. Effects on transition, dissipation, backscatter, equation balances, intermittency and energy spectra are all considered, as are the impact of the governing equations, the discretisation scheme, and the effect of grid coarsening. Also characteristics to particular models are considered, including the subgrid kinetic energy for the one-equation models, and constant histories for dynamic models. The argument that choice of LES model is unimportant is shown to be incorrect as a general statement, and a recommendation for when the models are best used is given.
|
4 |
A Filtered-Laminar-Flame PDF subgrid scale closure for LES of Premixed Turbulent Flames : Application to a Stratified Bluff-body burner with Differential Diffusion / Modélisation LES de la combustion turbulente prémélangée et stratifiée basée sur une PDF construite sur des flammes laminaires filtrées : Application à un brûleur stratifié avec diffusion différentielle.Nambully, Suresh Kumar 18 March 2013 (has links)
Un modèle de sous-maille pour la simulation aux grandes échelles de la combustion turbulente, basé sur le filtrage de flammes laminaires est présenté. Le formalisme repose sur une fonction de densité de probabilité (PDF) présumée construite à partir du filtrage de flammes laminaires 1D et sur une chimie tabulée. La taille de filtre LES appliqué à la combustion n'est pas fixée dans cette nouvelle approche mais est déterminée en fonction du niveau local de fluctuations de sous-maille. Le modèle a été validé sur des flammes laminaires 1D filtrées, sur des flammes de bec Bunsen et sur une configuration 3D turbulente avec la LES d'un brûleur à swirl. La comparaison de la simulation avec l'expérience en prémélangé et en stratifié est pleinement satisfaisante confirmant l'intérêt du nouveau modèle. Les échelles spatiales associées à la stratification sont trouvées grandes devant celles associées à la flamme (épaisseurs de zone de réaction et thermique) dont la propagation reste quasi-homogène. / A sub-grid scale closure for Large Eddy Simulation (LES) of turbulent combustion, based on physical space filtering of laminar flames is presented. The proposed formalism relies on a presumed probability density function (PDF) derived from the filtered laminar flames and flamelet tabulated chemistry. The combustion LES filter size is not fixed in this novel approach when sub-grid scale wrinkling occurs, but calibrated depending on the local level of unresolved scalar fluctuations. The model was validated by simulating 1D filtered laminar flames and 2D Bunsen flames. Subsequently, the model was tested on a 3D turbulent scenario by performing LES of the premixed and stratified configurations of the Cambridge swirl burner, experimentally studied by Sweeney and co-workers. Comparison of simulation and experiments for both the premixed and stratified configurations showed good agreement emphasizing the model characteristiscs. Instantaneous and time averaged LES data were analyzed to extract
|
5 |
A CFD Study of Pollution Dispersion in Street Canyon and Effects of Leaf Hair on PM2.5 DepositionBoontanom, Jedhathai 10 July 2019 (has links)
According to the United Nations, 55% of the world's population currently lives in urban areas and which is projected to increase to 67% by 2050. Thus, it is imperative that effective strategies are developed to mitigate urban pollution. Complementing field experiments, computational fluid dynamics (CFD) analyses are becoming an effective strategy for identifying critical factors that influence urban pollution and its mitigation. This thesis focuses on two scales of the urban micro-climate environment: (i) evaluation of LES simulations with a simplified grid for modeling pollution dispersion in a street canyon and (ii) investigation of the effects of leaf surface micro-characteristics, wind speed, and particle sizes on the dry deposition of fine particulate matter (PM2.5).
The first of these studies focuses on reproducing the pollution dispersion in a street canyon measured in a wind tunnel at Karlsruhe Institute of Technology (KIT), Germany. A simplified grid with the Large Eddy Simulations (LES) approach for canyon ratio W/H = 1 is proposed with the goal to reduce the computational cost by eliminating the need to model the entire canyon while striving to preserve the mixing induced by individual jets used to model vehicle emission in the experiment. LES is also capable of providing transient flow field and pollution concentration data not available with widely-used steady approaches such as RANS. The time-dependent information is crucial for pollution mitigation since pedestrians are usually exposed to pollution on a short-time basis.
The predictions are in satisfactory agreement with the experiment for W/H = 1, yielding the Pearson correlation coefficient R = 0.81, with better performance near the leeward wall. Due to the small span modeled, three-dimensional instabilities fail to develop which could probably explain the overprediction of pollution concentration near ground level. However, other LES investigations where the full canyon was modeled also observed over-predictions. The use of a discrete emission source was not observed to provide benefits. The current model could be further improved by using a larger spanwise domain with a continuous line source to allow large wavelength instabilities to develop and increase turbulent diffusion.
The second part of this thesis investigates the impact of trichome morphology and wind speed on the deposition of 0.3 μm and 1.0 μm particles on leaves. Using the one-way coupling approach to predict the fluid-particle interactions with the assumption that all particles that impact the leaf or trichome surface deposit, trichomes of 5 μm and 20 μm in diameter are modeled as equally spaced and uniform cylinders on an infinitely large plane.
The results show that trichome diameter, density, and wind speed have a favorable impact on deposition velocity. Comparing to the smooth leaf, the presence of the thicker 20 μm hairs increases the deposition velocity by 1.5 – 4 times, whereas, the presence of short 5um trichomes reduces the deposition by 15 - 45%. Increasing trichome height from H/D = 20 to 30 shows benefits for the thinner trichomes but lowers the deposition for the densely packed thicker trichomes. Less aerosol deposition is also observed when the particle diameter increases from 0.3 μm to 1.0 μm.
Due to the non-uniform contributions of these various traits, a non-dimensional ratio Rhp is proposed to model the aerosol deposition on leaf surface at wind speed of 1 m/s which yields a satisfactory linear correlation coefficient of 0.89 for 0 < R_hp < 0.3.
Comparing to other published field and wind tunnel experiments conducted on a much larger scale, the deposition velocities predicted are at the lower end (U_dep^* = 0.002 to 0.012 cm/s) because of the idealized conditions. Nonetheless, the results still offer valuable insight into the effects of trichome morphology on pollutant deposition in isolation from other macro-factors. / Master of Science / According to the United Nations, 55% of the world’s population currently lives in urban areas and which is projected to increase to 67% by 2050. Thus, it is imperative that effective strategies are developed to mitigate urban pollution. Complementing field experiments, computational fluid dynamics (CFD) analyses are becoming an effective strategy for identifying critical factors that influence urban pollution and its mitigation. This thesis focuses on two scales of the urban micro-climate environment: (i) evaluation of Large Eddy Simulation (LES) with a simplified method for modeling pollution dispersion in a street canyon and (ii) investigation of the effects of leaf surface micro-characteristics, wind speed, and particle sizes on the dry deposition of fine particulate matter (PM2.5). The first of these studies focuses on reproducing the pollution dispersion in a street canyon measured in a wind tunnel at Karlsruhe Institute of Technology (KIT), Germany. A simplified grid with the LES approach for canyon ratio W/H = 1 is proposed. The goal of this study is to reduce the computational cost by modelling the canyon with a very thin span instead of the entire canyon while providing time-dependent information which is crucial for pollution mitigation since pedestrians are usually exposed to pollution on a short-time basis. The predictions are in satisfactory agreement with the experiment for W/H = 1 with better performance near the leeward wall (i.e. the left wall) and overprediction of pollution concentration near ground level – as observed by other LES investigations. The current model could be further improved by using a larger spanwise domain with a continuous line source to allow instabilities to develop, thus improve prediction accuracy. The second part of this thesis investigates the impact of trichome (i.e. a hair or an outgrowth from leaf surface) morphology and wind speed on the deposition of 0.3 mm and 1.0 mm particles on leaves. The results show that trichome diameter, density, and wind speed have a favorable impact on deposition velocity. Less aerosol deposition is also observed when the particle diameter increases from 0.3 mm to 1.0 mm. No clear effects is observed by altering the trichome height. Due to the non-uniform contributions of these various traits, a non-dimensional ratio D∗ �D∗ �2 Rhp = hair hair is proposed to model the aerosol deposition on leaf surface at wind speed of D∗ H∗ S∗ p hair hair 1 m/s which yields a satisfactory linear correlation coefficient of 0.89 for 0 < Rhp < 0.3. This ratio includes trichome diameter (D∗ ), height (H∗ ), spacing (S∗ ) as well as the ratio of hair hair hair trichome diameter to particle diameter (D∗ /D∗ ). The results offer valuable insight into the hair p effects of trichome morphology on pollutant deposition in isolation from other macro-factors.
|
6 |
A Computational Framework for Fluid-Thermal Coupling of Particle DepositsPaul, Steven Timothy 13 June 2018 (has links)
This thesis presents a computational framework that models the coupled behavior between sand deposits and their surrounding fluid. Particle deposits that form in gas turbine engines and industrial burners, can change flow dynamics and heat transfer, leading to performance degradation and impacting durability. The proposed coupled framework allows insight into the coupled behavior of sand deposits at high temperatures with the flow, which has not been available previously. The coupling is done by using a CFD-DEM framework in which a physics based collision model is used to predict the post-collision state-of-the-sand-particle. The collision model is sensitive to temperature dependent material properties of sand. Particle deposition is determined by the particle's softening temperature and the calculated coefficient of restitution of the collision. The multiphase treatment facilitates conduction through the porous deposit and the coupling between the deposit and the fluid field.
The coupled framework was first used to model the behavior of softened sand particles in a laminar impinging jet flow field. The temperature of the jet and the impact surface were varied(T^* = 1000 – 1600 K), to observe particle behavior under different temperature conditions. The Reynolds number(Rejet = 20, 75, 100) and particle Stokes numbers (Stp = 0.53, 0.85, 2.66, 3.19) were also varied to observe any effects the particles' responsiveness had on deposition and the flow field. The coupled framework was found to increase or decrease capture efficiency, when compared to an uncoupled simulation, by as much as 10% depending on the temperature field. Deposits that formed on the impact surface, using the coupled framework, altered the velocity field by as much as 130% but had a limited effect on the temperature field.
Simulations were also done that looked at the formation of an equilibrium deposit when a cold jet impinged on a relatively hotter surface, under continuous particle injection. An equilibrium deposit was found to form as deposited particles created a heat barrier on the high temperature surface, limiting more particle deposition. However, due to the transient nature of the system, the deposit temperature increased once deposition was halted. Further particle injection was not performed, but it can be predicted that the formed deposit would begin to grow again.
Additionally, a Large-Eddy Simulation (LES) simulation, with the inclusion of the Smagorinsky subgrid model, was performed to observe particle deposition in a turbulent flow field. Deposition of sand particles was observed as a turbulent jet (Re jet=23000,T_jet^*= 1200 K) impinged on a hotter surface(T_surf^*= 1600 K). Differences between the simulated flow field and relevant experiments were attributed to differing jet exit conditions and impact surface thermal conditions. The deposit was not substantive enough to have a significant effect on the flow field. With no difference in the flow field, no difference was found in the capture efficiency between the coupled and decoupled frameworks. / Master of Science / Particle deposits can form in a wide range of environments leading to altered performance. In applications, such as jet engines, particles are heated to critically high temperatures. At these high temperatures, the particles can soften, and begin to exhibit characteristics of both a liquid and a solid. Overtime as these softened particles aggregate on a wall, a deposit will begin to form. These deposits alter the geometry resulting in changes in fluid temperature and velocity. This change in fluid behavior will affect the rate of particle deposition that happens in the future.
There has been limited work that has looked at the coupled behavior between a deposit and its surrounding fluid, experimentally or computationally. The purpose of this research was to develop a framework that models the deposition of softened particles, and the coupled behavior between deposits and the fluid. This research was able to show that the presence of a deposit could change its surrounding fluid’s velocity and temperature significantly. Differences in the rate of particle deposition also occurred when a deposit had formed on a surface. These results show the importance of capturing the relationship between deposits and the surrounding fluid. With further development, this proposed framework can provide insight into altered gas turbine performance and can lead to improved maintenance plans.
|
7 |
Modélisation d'écoulements atmosphériques stratifiés par Large-Eddy Simulation à l'aide de Code_Saturne / Large-eddy simulation of stratified atmospheric flows with the CFD code Code_SaturneDall'Ozzo, Cédric 14 June 2013 (has links)
La modélisation par simulation des grandes échelles (Large-Eddy Simulation - LES) des processus physiques régissant la couche limite atmosphérique (CLA) demeure complexe de part la difficulté des modèles à capter l'évolution de la turbulence entre différentes conditions de stratification. De ce fait, l'étude LES du cycle diurne complet de la CLA comprenant des situations convectives la journée et des conditions stables la nuit est très peu documenté. La simulation de la couche limite stable où la turbulence est faible, intermittente et qui est caractérisée par des structures turbulentes de petite taille est tout particulièrement compliquée. En conséquence, la capacité de la LES à bien reproduire les conditions météorologiques de la CLA, notamment en situation stable, est étudiée à l'aide du code de mécanique des fluides développé par EDF R&D, Code_Saturne. Dans une première étude, le modèle LES est validé sur un cas de couche limite convective quasi stationnaire sur terrain homogène. L'influence des modèles sous-maille de Smagorinsky, Germano-Lilly, Wong-Lilly et WALE (Wall-Adapting Local Eddy-viscosity) ainsi que la sensibilité aux méthodes de paramétrisation sur les champs moyens, les flux et les variances est discutées. Dans une seconde étude le cycle diurne complet de la CLA pendant la campagne de mesure Wangara est modélisé. L'écart aux mesures étant faible le jour, ce travail se concentre sur les difficultés rencontrées la nuit à bien modéliser la couche limite stable. L'impact de différents modèles sous-maille ainsi que la sensibilité au coefficient de Smagorinsky ont été analysés. Par l'intermédiaire d'un couplage radiatif réalisé en LES, les répercussions du rayonnement infrarouge et solaire sur le jet de basse couche nocturne et le gradient thermique près de la surface sont exposées. De plus l'adaptation de la résolution du domaine à l'intensité de la turbulence et la forte stabilité atmosphérique durant l'expérience Wangara sont commentées. Enfin un examen des oscillations numériques inhérentes à Code_Saturne est réalisé afin d'en limiter les effets / Large-eddy simulation (LES) of the physical processes in the atmospheric boundary layer (ABL) remains a complex subject. LES models have difficulties to capture the evolution of the turbulence in different conditions of stratification. Consequently, LES of the whole diurnal cycle of the ABL including convetive situations in daytime and stable situations in the night time is seldom documented. The simulation of the stable atmospheric boundary layer which is characterized by small eddies and by weak and sporadic turbulence is espacialy difficult. Therefore The LES ability to well reproduce real meteorological conditions, particularly in stable situations, is studied with the CFD code developed by EDF R&D, Code_Saturne. The first study consist in validate LES on a quasi-steady state convective case with homogeneous terrain. The influence of the subgrid-scale models (Smagorinsky model, Germano-Lilly model, Wong-Lilly model and Wall-Adapting Local Eddy-viscosity model) and the sensitivity to the parametrization method on the mean fields, flux and variances are discussed.In a second study, the diurnal cycle of the ABL during Wangara experiment is simulated. The deviation from the measurement is weak during the day, so this work is focused on the difficulties met during the night to simulate the stable atmospheric boundary layer. The impact of the different subgrid-scale models and the sensitivity to the Smagorinsky constant are been analysed. By coupling radiative forcing with LES, the consequences of infra-red and solar radiation on the nocturnal low level jet and on thermal gradient, close to the surface, are exposed. More, enhancement of the domain resolution to the turbulence intensity and the strong atmospheric stability during the Wangara experiment are analysed. Finally, a study of the numerical oscillations inherent to Code_Saturne is realized in order to decrease their effects
|
8 |
[en] CONTRIBUTION TO THE LARGE EDDY SIMULATION OF A TURBULENT PREMIXED FLAME STABILIZED IN A HIGH SPEED FLOW / [pt] CONTRIBUIÇÃO À SIMULAÇÃO DAS GRANDES ESCALAS DE UMA CHAMA TURBULENTA PRÉ‐MISTURADA ESTABILIZADA EM UM ESCOAMENTO A ALTA VELOCIDADEFERNANDO OLIVEIRA DE ANDRADE 18 October 2017 (has links)
[pt] Uma metodologia híbrida envolvendo simulação de grandes escalas e função densidade probabilidade transportada (LES-PDF) é desenvolvida para realizar simulações de escoamentos turbulentos reativos a baixo número de Mach. Equações de transporte de massa, da quantidade de movimento e de um escalar são resolvidas em conjunto com uma equação de estado no contexto do método LES. A modelagem da turbulência é realizada pelo modelo clássico de Smagorinsky e a taxa de produção química é representada pela lei de Arrhenius, para reação de combustão única, global e irreversível. As equações de transporte
são discretizadas no espaço e no tempo mediante o uso de esquemas de segunda ordem, sobre malhas cartesianas uniformes, no âmbito do método dos volumes finitos. Os efeitos da turbulência sobre a combustão na escala sub-filtro são determinados por uma abordagem lagrangeana da PDF, a qual faz uso da técnica de Monte Carlo: equações diferenciais estocásticas (SDE), equivalentes a equação de Fokker-Plank, são utilizadas para a variável de progresso da reação química. LES e PDF evoluem simultaneamente, trocando informações a cada passo de integração no tempo, de modo que o campo de velocidade filtrado, a freqüência turbulenta e o coeficiente de difusão são fornecidos por LES, enquanto o modelo
PDF retorna a taxa de reação química filtrada. Devido ao elevado número de partículas empregado no modelo PDF, a paralelização do programa lagrangeano é realizada, com base na estratégia de decomposição de domínios, implementada no programa euleriano. O modelo final é usado para simular uma configuração experimental que consiste de uma chama de metano e ar, estabilizada entre
escoamentos paralelos de gases queimados e gases frescos em um canal de seção transversal quadrada constante. Uma comparação detalhada entre os resultados obtidos e os dados experimentais é realizada. / [en] A hybrid Large Eddy Simulation / transported Probability Density Function (LES-PDF) computational model is developed to perform the numerical simulation of variable-density low Mach number turbulent reactive flows. Transport equations for mass, momentum, and scalars are solved together with an equation of state within the LES framework. Turbulence is modeled using the classical Smagorinsky closure whereas chemical reaction is first addressed thanks to a global single-step chemistry scheme. The governing equations are discretized using second order accuracy spatial and temporal approximations applied to uniform Cartesian meshes within a finite volume framework. The effects of subgrid scale (SGS) turbulence on the combustion processes are accounted for by means of a Lagrangian transported PDF model which is coupled with the LES solver. The PDF model relies on the use of a Monte Carlo technique: Stochastic Differential Equations (SDE), equivalent to the Fokker- Planck equations are considered for the progress variable. LES and PDF models are solved simultaneously, exchanging information at each integration time step, the velocity
field, turbulence frequency and diffusion coefficient being provided by LES, whereas the PDF model returns the filtered chemical reaction rate. Parallelization of the Lagrangian solver has been performed based on the domain decomposition strategy, the same strategy being already implemented for the eulerian LES solver. The resulting computational model is used to perform the simulation of an experimental test case consisting of a CH4-air flame established between two streams of fresh and burnt pilot gases in a constant area square cross section channel. The accuracy of the numerical solutions provided by the hybrid LESPDF
approach is assessed by detailed comparisons with experimental data.
|
9 |
Prédiction du bruit large bande de ventilateurs centrifuges à usage domestiqueKone, Tenon Charly January 2013 (has links)
Ce mémoire présente une étude numérique du bruit aéroacoustique large bande d'une roue
de ventilateur centrifuge. La recherche bibliographique démontre qu'il existe peu de
méthod~s pour identifier les zones responsables de la propagation du bruit large bande des
centrifuges due à la complexité de la géométrie du ventilateur. La connaissance de ces
zones responsables de ce type de bruit orientera la conception d'un ventilateur silencieux.
Afin d'accroître la gamme de méthode pour la localisation de ces zones, un code spécifique
a été développé et présenté dans ce mémoire. L'approche utilisée vise à simuler d'une part,
l'écoulement dans le ventilateur par la LES (Large Eddy Simulation) sous le logiciel
Fluent. En effet, la LES permet d'avoir accès aux petites échelles responsables du bruit
large bande. Ensuite, les fluctuations de pression pariétales émanant de cette simulation
sont récupérées pour alimenter l'analogie acoustique. D'autre part, la puissance acoustique
rayonnée est calculée par le biais du code spécifiquement développé. Ce code s'appuie sur
la méthode de la décomposition modale (DOP). Finalement, on extrait les modes et les
zones qui rayonnent le plus sur les pales de la roue (principale source de bruit large bande).
Les résultats de validation numériques entre le code développé et le logiciel Fluent sont
convaincants. En effet, les variations des champs acoustiques des deux codes sont
comparables avec une différence en moyenne de 2.5dB. De plus, on obtient une atténuation
du bruit par la distance qui correspond à la décroissance d'une onde plane en fonction de la
distance. Les résultats d'identification des zones de la pale qui contribuent le plus au
rayonnement acoustique sont également présentés dans ce mémoire.
Cette technique permettra aux concepteurs d'aiguiller les modifications à faire pour rendre
la roue de ventilation plus silencieuse.
|
10 |
Simulation des émissions d'un moteur à propergol solide : vers une modélisation multi-échelle de l'impact atmosphérique des lanceurs / Large eddy simulations of a solidrocket motor jet : towards a multi-scale modeling of the atmospheric impact of rocket emissionsPoubeau, Adèle 12 February 2015 (has links)
Les lanceurs ont un impact sur la composition de l'atmosphere, et en particulier sur l'ozone stratospherique. Parmi tous les types de propulsion, les moteurs à propergol solide ont fait l'objet d'une attention particulière car leurs émissions sont responsables d'un appauvrissement significatif d'ozone dans le panache des lanceurs lors des premières heures suivant le lancement. Ce phénomène est principalement dû à la conversion de l'acide chlorhydrique, un composé chimique présent en grandes quantités dans les émissions de ce type de moteur, en chlore actif qui réagit par la suite avec l'ozone dans un cycle catalytique similaire à celui responsable du "trou de la couche d'ozone", cette diminution périodique de l'ozone en Antarctique. Cette conversion se produit dans le panache supersonique, où les hautes températures favorisent une seconde combustion entre certaines espèces chimiques du panache et l'air ambiant. L'objectif de cette étude est d'évaluer la concentration de chlore actif dans le panache d'un moteur à propergol solide en utilisant la technique des Simulations aux Grandes Echelles (SGE). Le gaz est injecté à travers la tuyère d'un moteur et une méthode de couplage entre deux instances du solveur de mécanique des fluides est utilisée pour étendre autant que possible le domaine de calcul derrière la tuyère (jusqu'à l'équivalent de 400 diamètres de sortie de la tuyère). Cette méthodologie est validée par une première SGE sans chimie, en analysant les caractéristiques de l'écoulement supersonique avec co-écoulement obtenu par ce calcul. Ensuite, le chimie mettant en jeu la conversion des espèces chlorées a été étudiée au moyen d'un modèle "hors-ligne" permettant de résoudre une chimie complexe le long de lignes de courant extraites d'un écoulement moyenné dans le temps résultant du calcul précédent (non réactif). Enfin, une SGE multi-espèces est réalisée, incluant un schéma chimique auparavant réduit afin de limiter le coût de calcul. Cette simulation représente une des toutes premières SGE d'un jet supersonique réactif, incluant la tuyère, effectuée sur un domaine de calcul aussi long. En capturant avec précision le mélange du panache avec l'air ambiant ainsi que les interactions entre turbulence et combustion, la technique des simulations aux grandes échelles offre une évaluation des concentrations des espèces chimiques dans le jet d'une precision inédite. Ces résultats peuvent être utilisés pour initialiser des calculs atmosphériques sur de plus larges domaines, afin de modéliser les réactions entre chlore actif et ozone et de quantifier l'appauvrissement en ozone dans le panache. / Rockets have an impact on the chemical composition of the atmosphere, and particularly on stratospheric ozone. Among all types of propulsion, Solid-Rocket Motors (SRMs) have given rise to concerns since their emissions are responsible for a severe decrease in ozone concentration in the rocket plume during the first hours after a launch. The main source of ozone depletion is due to the conversion of hydrogen chloride, a chemical compound emitted in large quantities by ammonium perchlorate based propellants, into active chlorine compounds, which then react with ozone in a destructive catalytic cycle, similar to those responsible for the Antartic "Ozone hole". This conversion occurs in the hot, supersonic exhaust plume, as part of a strong second combustion between chemical species of the plume and air. The objective of this study is to evaluate the active chlorine concentration in the far-field plume of a solid-rocket motor using large-eddy simulations (LES). The gas is injected through the entire nozzle of the SRM and a local time-stepping method based on coupling multi-instances of the fluid solver is used to extend the computational domain up to 400 nozzle exit diameters downstream of the nozzle exit. The methodology is validated for a non-reactive case by analyzing the flow characteristics of the resulting supersonic co-flowing under-expanded jet. Then the chemistry of chlorine is studied off-line using a complex chemistry solver applied on trajectories extracted from the LES time-averaged flow-field. Finally, the online chemistry is analyzed by means of the multi-species version of the LES solver using a reduced chemical scheme. To the best of our knowledge, this represents one of the first LES of a reactive supersonic jet, including nozzle geometry, performed over such a long computational domain. By capturing the effect of mixing of the exhaust plume with ambient air and the interactions between turbulence and combustion, LES offers an evaluation of chemical species distribution in the SRM plume with an unprecedented accuracy. These results can be used to initialize atmospheric simulations on larger domains, in order to model the chemical reactions between active chlorine and ozone and to quantify the ozone loss in SRM plumes.
|
Page generated in 0.0356 seconds