• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 191
  • 117
  • 23
  • 12
  • 11
  • 6
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 414
  • 194
  • 99
  • 92
  • 89
  • 87
  • 71
  • 70
  • 68
  • 63
  • 58
  • 53
  • 49
  • 45
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Migration of leachate solutin through clay soil

Abdel Warith, Mostafa. January 1987 (has links)
The problem of domestic solid wastes buried in landfill sites is viewed from the aspect of leachate contamination and migration in the substrate. Generally, this occurs through the penetration of the contaminant into the liner material. This study assesses the efficiency of natural clay barriers as an expedient economic lining material. / Various chemical constituents of the landfill leachate of an actual waste containment site at Lachenaie (35 km east of Montreal) were determined from samples collected from specially designed basins. / In companion laboratory tests, these leachate samples were permeated through laboratory columns that contained the natural clay compacted at the optimum water content. The columns were constructed so as to permit simulation of slow, saturated, anaerobic flow of leachate through the clay lining surrounding the landfill and leachate basins. Leachates were permeated through the soil columns for periods of four to five months, during which effluents were collected periodically and analyzed for different chemical species and physical parameters. These chemical analyses measured changes in the concentration of: (a) cations (Na, K, Ca, and Mg), (b) anions (Cl, HCO$ sb3$, and CO$ sb3$), (c) total organic carbon (TOC), and (d) heavy metals (Fe, Zn, Pb, and Cu). The physical parameters measured included: (a) pH, and (b) specific conductivity. / Subsequent to the leaching tests, the column contents were cut into six sections and analyzed to determine the distribution profiles of the adsorbed and retained contaminants at various time durations. / Predictions, using a dispersion-convection model for concentration profile development for either adsorbed or retained contaminants, were compared with the experimentally determined profiles (both in leaching columns and landfill laboratory model). / Another set of experiments was also conducted to evaluate the effect of some organic fluids on the geotechnical properties of different clay soils (natural clay and two reference clay soils: illite and kaolinite). / The results from this study have demonstrated that the natural clay soil can be used to adequately contain the different contaminant species usually present in the leachate solutions. Furthermore, the data suggested that under favourable soil conditions, landfill leachates containing low levels of trace metals will not pose a substantial contamination threat to the subsurface environment, provided that a proper thickness of barrier is used. (Abstract shortened with permission of author.)
32

Groundwater quality assessment at Olusosun landfill, Lagos, Nigeria

Sanusi, Akolade Lateef 18 November 2013 (has links)
An assessment of the groundwater quality at the Olusosun landfill in Lagos, Nigeria was conducted to determine interactions between the landfill wastes and the groundwater and the potential migration of pollutants into the neighbouring communities. Groundwater samples were collected from four locations within the landfill bi-weekly for three months (March 19, 2013 to May 28, 2013), and analysed for water quality parameters and metals. The results indicated that the concentrations of some metals (Cr, Fe, Cd, Mn, and Co) and other water quality parameters in some sampling locations were slightly above the World Health Organization (WHO) and the Nigerian Standard for Drinking Water Quality (NSDWQ) standard limits. Lead was also detected in the groundwater samples, though at concentrations within the standard limits. Conclusively, the Olusosun landfill has impaired groundwater quality, thereby, posing environmental and human health concerns to the neighbouring communities of Oregun, Ketu and Ojota.
33

The hydrology of landfill and land management

Dickson, Andrew January 1987 (has links)
No description available.
34

Analysis of variation in inorganic contaminant concentration and distribution in a landfill leachate plume: Astrolabe Park, Sydney, Australia

Jorstad, Lange B., School of Biological, Earth & Environmental Sciences, UNSW January 2006 (has links)
Spatial and temporal variation in inorganic contaminant concentration and distribution in a landfill leachate plume is examined to determine the mechanisms responsible for the observed variation, and to provide an assessment of the implications of this variation with respect to the interpretation of monitoring data, specifically with regards to its application to geochemical modelling. An integrated approach to field investigation was utilised in this study, including sample collection from a network of standard and bundled piezometers, surface and borehole geophysical investigation techniques, and a manometer board for the measurement of hydraulic head in bundled piezometers. Nine groundwater sampling events were conducted over a 12 month period, with sample analyses comprising field measurement of water quality parameters and redox sensitive elements, and laboratory analysis for major and trace elements and stable isotopes (??18O, ??2H, ??13C-DIC, ??15N). The vertical position of the centre of mass of the leachate plume was observed to vary up to 2 metres between monitoring events, and concentrations of key indicator parameters were observed to fluctuate by as much as 160%. The electrical images created by surface resistivity transects along a groundwater flow path between the landfill and a groundwater-fed pond a short distance downgradient suggest a plume configuration characterised by discrete pulses of concentrated leachate migrating in a conservative manner between the landfill and the pond. It is hypothesized that these leachate slugs are flushed into the aquifer during sustained periods of rainfall, presumed to be a significant driver of leachate mobilisation into the underlying aquifer. The most significant hydrogeochemical processes affecting contaminant mobilisation, transport and attenuation in the leachate-impacted shallow aquifer included microbial degradation of organic waste, dissolution of inorganic waste, ion exchange, precipitation of sulfide and carbonate minerals, mixing with rainfall recharge along flow path, and redox transformations along the plume fringe. These processes are supported by hydrogeochemical data analysis, and generally agree with the results of inverse geochemical modelling. While analysis of detailed groundwater monitoring appears to provide a plausible description of the plume dynamics, the results of the electrical resistivity transects indicates a more varied and complex plume configuration than is suggested by the borehole data alone. This integration of investigation techniques underscores the inherent inadequacy of even a high-resolution monitoring well network to accurately describe the full extent of variation in time and space within a contaminant plume, even in a relatively simple aquifer environment, and accentuates the potentially significant limitations of site-scale hydrogeochemical interpretation based solely on borehole monitoring data.
35

Analysis of variation in inorganic contaminant concentration and distribution in a landfill leachate plume: Astrolabe Park, Sydney, Australia

Jorstad, Lange B., School of Biological, Earth & Environmental Sciences, UNSW January 2006 (has links)
Spatial and temporal variation in inorganic contaminant concentration and distribution in a landfill leachate plume is examined to determine the mechanisms responsible for the observed variation, and to provide an assessment of the implications of this variation with respect to the interpretation of monitoring data, specifically with regards to its application to geochemical modelling. An integrated approach to field investigation was utilised in this study, including sample collection from a network of standard and bundled piezometers, surface and borehole geophysical investigation techniques, and a manometer board for the measurement of hydraulic head in bundled piezometers. Nine groundwater sampling events were conducted over a 12 month period, with sample analyses comprising field measurement of water quality parameters and redox sensitive elements, and laboratory analysis for major and trace elements and stable isotopes (??18O, ??2H, ??13C-DIC, ??15N). The vertical position of the centre of mass of the leachate plume was observed to vary up to 2 metres between monitoring events, and concentrations of key indicator parameters were observed to fluctuate by as much as 160%. The electrical images created by surface resistivity transects along a groundwater flow path between the landfill and a groundwater-fed pond a short distance downgradient suggest a plume configuration characterised by discrete pulses of concentrated leachate migrating in a conservative manner between the landfill and the pond. It is hypothesized that these leachate slugs are flushed into the aquifer during sustained periods of rainfall, presumed to be a significant driver of leachate mobilisation into the underlying aquifer. The most significant hydrogeochemical processes affecting contaminant mobilisation, transport and attenuation in the leachate-impacted shallow aquifer included microbial degradation of organic waste, dissolution of inorganic waste, ion exchange, precipitation of sulfide and carbonate minerals, mixing with rainfall recharge along flow path, and redox transformations along the plume fringe. These processes are supported by hydrogeochemical data analysis, and generally agree with the results of inverse geochemical modelling. While analysis of detailed groundwater monitoring appears to provide a plausible description of the plume dynamics, the results of the electrical resistivity transects indicates a more varied and complex plume configuration than is suggested by the borehole data alone. This integration of investigation techniques underscores the inherent inadequacy of even a high-resolution monitoring well network to accurately describe the full extent of variation in time and space within a contaminant plume, even in a relatively simple aquifer environment, and accentuates the potentially significant limitations of site-scale hydrogeochemical interpretation based solely on borehole monitoring data.
36

Analysis of variation in inorganic contaminant concentration and distribution in a landfill leachate plume: Astrolabe Park, Sydney, Australia

Jorstad, Lange B., School of Biological, Earth & Environmental Sciences, UNSW January 2006 (has links)
Spatial and temporal variation in inorganic contaminant concentration and distribution in a landfill leachate plume is examined to determine the mechanisms responsible for the observed variation, and to provide an assessment of the implications of this variation with respect to the interpretation of monitoring data, specifically with regards to its application to geochemical modelling. An integrated approach to field investigation was utilised in this study, including sample collection from a network of standard and bundled piezometers, surface and borehole geophysical investigation techniques, and a manometer board for the measurement of hydraulic head in bundled piezometers. Nine groundwater sampling events were conducted over a 12 month period, with sample analyses comprising field measurement of water quality parameters and redox sensitive elements, and laboratory analysis for major and trace elements and stable isotopes (??18O, ??2H, ??13C-DIC, ??15N). The vertical position of the centre of mass of the leachate plume was observed to vary up to 2 metres between monitoring events, and concentrations of key indicator parameters were observed to fluctuate by as much as 160%. The electrical images created by surface resistivity transects along a groundwater flow path between the landfill and a groundwater-fed pond a short distance downgradient suggest a plume configuration characterised by discrete pulses of concentrated leachate migrating in a conservative manner between the landfill and the pond. It is hypothesized that these leachate slugs are flushed into the aquifer during sustained periods of rainfall, presumed to be a significant driver of leachate mobilisation into the underlying aquifer. The most significant hydrogeochemical processes affecting contaminant mobilisation, transport and attenuation in the leachate-impacted shallow aquifer included microbial degradation of organic waste, dissolution of inorganic waste, ion exchange, precipitation of sulfide and carbonate minerals, mixing with rainfall recharge along flow path, and redox transformations along the plume fringe. These processes are supported by hydrogeochemical data analysis, and generally agree with the results of inverse geochemical modelling. While analysis of detailed groundwater monitoring appears to provide a plausible description of the plume dynamics, the results of the electrical resistivity transects indicates a more varied and complex plume configuration than is suggested by the borehole data alone. This integration of investigation techniques underscores the inherent inadequacy of even a high-resolution monitoring well network to accurately describe the full extent of variation in time and space within a contaminant plume, even in a relatively simple aquifer environment, and accentuates the potentially significant limitations of site-scale hydrogeochemical interpretation based solely on borehole monitoring data.
37

Leachate chemistry of two modern municipal waste landfills in Melbourne, Victoria

Strudwick, Darryl Grant Unknown Date (has links) (PDF)
This study investigates the occurrence and chemical composition of leachate at Clayton South and Brooklyn Municipal waste landfills in Melbourne, Victoria. Both are ‘modern’ municipal waste landfills, being engineered and managed consistent with current regulatory requirements. These landfills accept only putrescible and solid inert waste, but not soluble chemical, hazardous, liquid or prescribed industrial waste. (For complete abstract open document)
38

Analysis of variation in inorganic contaminant concentration and distribution in a landfill leachate plume: Astrolabe Park, Sydney, Australia

Jorstad, Lange B., School of Biological, Earth & Environmental Sciences, UNSW January 2006 (has links)
Spatial and temporal variation in inorganic contaminant concentration and distribution in a landfill leachate plume is examined to determine the mechanisms responsible for the observed variation, and to provide an assessment of the implications of this variation with respect to the interpretation of monitoring data, specifically with regards to its application to geochemical modelling. An integrated approach to field investigation was utilised in this study, including sample collection from a network of standard and bundled piezometers, surface and borehole geophysical investigation techniques, and a manometer board for the measurement of hydraulic head in bundled piezometers. Nine groundwater sampling events were conducted over a 12 month period, with sample analyses comprising field measurement of water quality parameters and redox sensitive elements, and laboratory analysis for major and trace elements and stable isotopes (??18O, ??2H, ??13C-DIC, ??15N). The vertical position of the centre of mass of the leachate plume was observed to vary up to 2 metres between monitoring events, and concentrations of key indicator parameters were observed to fluctuate by as much as 160%. The electrical images created by surface resistivity transects along a groundwater flow path between the landfill and a groundwater-fed pond a short distance downgradient suggest a plume configuration characterised by discrete pulses of concentrated leachate migrating in a conservative manner between the landfill and the pond. It is hypothesized that these leachate slugs are flushed into the aquifer during sustained periods of rainfall, presumed to be a significant driver of leachate mobilisation into the underlying aquifer. The most significant hydrogeochemical processes affecting contaminant mobilisation, transport and attenuation in the leachate-impacted shallow aquifer included microbial degradation of organic waste, dissolution of inorganic waste, ion exchange, precipitation of sulfide and carbonate minerals, mixing with rainfall recharge along flow path, and redox transformations along the plume fringe. These processes are supported by hydrogeochemical data analysis, and generally agree with the results of inverse geochemical modelling. While analysis of detailed groundwater monitoring appears to provide a plausible description of the plume dynamics, the results of the electrical resistivity transects indicates a more varied and complex plume configuration than is suggested by the borehole data alone. This integration of investigation techniques underscores the inherent inadequacy of even a high-resolution monitoring well network to accurately describe the full extent of variation in time and space within a contaminant plume, even in a relatively simple aquifer environment, and accentuates the potentially significant limitations of site-scale hydrogeochemical interpretation based solely on borehole monitoring data.
39

Analysis of variation in inorganic contaminant concentration and distribution in a landfill leachate plume: Astrolabe Park, Sydney, Australia

Jorstad, Lange B., School of Biological, Earth & Environmental Sciences, UNSW January 2006 (has links)
Spatial and temporal variation in inorganic contaminant concentration and distribution in a landfill leachate plume is examined to determine the mechanisms responsible for the observed variation, and to provide an assessment of the implications of this variation with respect to the interpretation of monitoring data, specifically with regards to its application to geochemical modelling. An integrated approach to field investigation was utilised in this study, including sample collection from a network of standard and bundled piezometers, surface and borehole geophysical investigation techniques, and a manometer board for the measurement of hydraulic head in bundled piezometers. Nine groundwater sampling events were conducted over a 12 month period, with sample analyses comprising field measurement of water quality parameters and redox sensitive elements, and laboratory analysis for major and trace elements and stable isotopes (??18O, ??2H, ??13C-DIC, ??15N). The vertical position of the centre of mass of the leachate plume was observed to vary up to 2 metres between monitoring events, and concentrations of key indicator parameters were observed to fluctuate by as much as 160%. The electrical images created by surface resistivity transects along a groundwater flow path between the landfill and a groundwater-fed pond a short distance downgradient suggest a plume configuration characterised by discrete pulses of concentrated leachate migrating in a conservative manner between the landfill and the pond. It is hypothesized that these leachate slugs are flushed into the aquifer during sustained periods of rainfall, presumed to be a significant driver of leachate mobilisation into the underlying aquifer. The most significant hydrogeochemical processes affecting contaminant mobilisation, transport and attenuation in the leachate-impacted shallow aquifer included microbial degradation of organic waste, dissolution of inorganic waste, ion exchange, precipitation of sulfide and carbonate minerals, mixing with rainfall recharge along flow path, and redox transformations along the plume fringe. These processes are supported by hydrogeochemical data analysis, and generally agree with the results of inverse geochemical modelling. While analysis of detailed groundwater monitoring appears to provide a plausible description of the plume dynamics, the results of the electrical resistivity transects indicates a more varied and complex plume configuration than is suggested by the borehole data alone. This integration of investigation techniques underscores the inherent inadequacy of even a high-resolution monitoring well network to accurately describe the full extent of variation in time and space within a contaminant plume, even in a relatively simple aquifer environment, and accentuates the potentially significant limitations of site-scale hydrogeochemical interpretation based solely on borehole monitoring data.
40

Structural behavior of jointed leachate collection pipes

Shimoga, Ramesh. January 1999 (has links)
Thesis (M.S.)--Ohio University, August, 1999. / Title from PDF t.p.

Page generated in 0.0359 seconds